
Issue Number 31

Programm ing - User Support

Appl ications

$3.00

ISSN , 01411-9331

Using SCSI for Generalized I/O
SCSI Can be Used for More Than Just Hard Drives

Communicating with Floppy Disks
Disk Parameters and Their Variations

XBIOS
A Replacement BIOS for the SB180

K-OS ONE and the SAGE
Demystifing Operating Systems

Remote
Designing a Remote System Program

The ZCPR3 Corner
ARUNZ Documentation

The COMPUTER
l

THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, Montana
59912

406·257-9119

JOURNAL

XBIOS
A replacement BIOS for the Mlcromint SB180, with
expanded TPA and banked system extensions.
by Richard Jacobson 16

Using SCSI for Generalized 1/0
The SCSI Interlace has become very popular for
hard drives, but it can also be used for data
acquisition and control.
by Rick Lehrbaum 6

Communicating With Floppy Disks
A detailed look at the parameters that specify how
data Is recorded on floppy disks, and how
variations in these parameters can prevent one
system from reading a disk from another system.
by E. Stiltner. .. 13

, ., '.Issue Number 31Features
Editor/Publisher

Art Carlson

Art Director
Donna Carlson

Production Assistant
Judie Overbeek

Circulation
Donna Carlson

Contributing Editors
Joe Bartel
Bob Blum
Bill Kibler

Rick Lehrbaum
Frederick B. Maxwell

Jay Sage
Kenneth A. Taschner

K·OS ONE and the SAGE

Entire contents copyright©
1988 by The Computer Journal.

Subscription rates-$16 one
year (6 issues), or $28 two years (12
issues) in the U.S., $22 one year in
canada and Mexico, and $24 (sur
face) for one year in other coun
tries. All funds must be In US
dollars on a US bank.

Demystiffng operating systems, and how to bring
up the SAGE 68000 under Hawthorne's K-OS ONE.
by Bill Kibler , 18

Remote
Developing a program to drive the 68000 Tiny
Giant as a remote from a CPIM system, and to
transfer flies between the systems.
by AI J. Szymanski 36

''I

"'1

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, Montana, 59912, or
The Computer Journal, PO Box
1697, Kalispell, MT 59903.

Address all editorial and adver
tising InqUiries to: The Computer
Journal, 190 Sullfvan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

Columns
Editorial 2
Reader's Feedback _ 5
ZCPR3 Corner by Jay Sage 23
CPIM Corner by Bob Blum , 34
Computer Corner by Bill Kibler , 44

'1

The Computer Journal/Issue '31

Editor's Page
M
o
V
I
N
G

?
•

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don't notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms,
but these registered trademarks are
the property of the respective com
panies. It is important to acknowledge
these trademarks as their property to
avoid their losing the rights and the
term becoming public property. The
following frequently used marks are
acknowledged, and we apologize for
any we have overlooked.

Apple II, II + , IIc, IIe, Macintosch,
DOS 3.3. ProDOS; Apple Computer
Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. MBASIC;
Microsoft. Wordstar; MicroPro Inter
national Corp. IBM-PC, XT, and AT;
IBM Corporation. Z-80, Zilog. MT
BASIC, Softaid, Inc. Turbo Pascal,
Borland International.

Where these terms (and others) are
used in The Computer Journal they are
acknowledged to be the property of the
respective companies even if not
specifically mentioned in each occuren
ceo

2

Is the PC·XT/ AT the Next Orphan?
IBM has traditionally introduced new

mainframe models with revisions intended
to force their customers to replace equip
ment with the newest models - and then
phased out support for the older systems.
Now, they're trying the same approach
with their Pc.

IBM has discontinued production of
both the PC-XT and the PC-AT, in favor
of the PS/2, with the intention that all
current software and all new software will
be written for the PS/2, and will not run
on the older systems. If they can accom
plish this, and at the same time prevent
the cloning of the PS/2, they would stamp
out the clones which are taking their
market share.

But, there are millions of PC-XT/ ATs
out there, and they provide a very attrac
tive market for third party support. The
PC market is a lot different than the
CP/M market, because the CP/M market
was badly fragmented by the many
manufacturers who all wanted to do it
their way. You couldn't just buy a CP/M
program and expect it to run in your
CP/M system because of the various disk
sizes, disk formats, 110 provisions, BIOS
implementations, and terminal con
figurations. You had to patch and install
the software, and sometimes the program
made assumptions which prevented it
from running on your system. The PC
Clone market is different, because the
machines wouldn't sell unless they' were
highly PC compatible, so any program
will run in any system - except for some
graphics or extended memory requiremen
ts which can be met by buying a relatively
inexpensive card.

The XTs and ATs are poorly designed
and outdated. It is obvious that they will
have to be replaced in applications
requiring more speed and power. The
question is, what will replace them? We
have skipped the XT generation, and will
probably skip the AT generation, while
we keep hacking on our CP/M systems,
our AMPRO '186 Little Board, and the
Hawthorne 68000 Tiny Giant. When we
really need something for CAD or large
databases, we'll see what else has
developed. We'll locate or write the sof
tware, and then buy the hardware that
fits. Right now the Compaq 386/20 looks
very interesting, and appears better that
anything that IBM has to offer. The
c10ners just might beat IBM at their own
game!

Viewpoints on System Design
I am fully aware that I am nonconven

tional, and that no one will ever produce
an affordable system which will satisfy
me, but that does not prevent me from
forming an opinion of what I want. As
Charles McCabe from the San Francisco
Chronicle said, "Any clod can have the
facts, but having opinions is an an."

"Any clod can have
the facts, but having
opinions is an art."

Charles McCabe
San Francisco Chronicle

I'm preparing a series on "What a har
dware/operating system should provide,"
and your input in the form of letters,
notes, comments, anicles, etc. are
welcome.

Perhaps we'll start a section called
'Viewpoints" where you can sound off
about hardware, operating system, or sof
tware topics.

Some of my requirements are: 1) An
open Bus, 2) Modifiable Operating
System with source code, 3) Extensive,
easily expanded I/O (at least four serial
ports and two bidirectional parallel ports)
with the ability to redirect the I/O to any
port from within a program, 4) The ability
to add slave boards which can be anything
from complete Single Board Computers
to specialized numeric control boards, 5)
The ability to use different CPU families
at the same time, 6) The ability to add
almost any quantity or type of peripheral.

If I could retire and have lots of time,
I'd consider hacking a system based on an
S-I00 mother board using a redefined
Bus. What you'd like to see in a system is
different than what I want, so send your
input and make yourself heard.

More on User Interfacing
In the past several issues, I have been

talking about the problems in designing
and implementing the user interface. So
far, I have come up with more questions
than answers, but at least I am getting a
feel for what I want to do.

A large pan of the problem is the lack
of published realistic, working-level, in
formation. The lack of information is
easy to understand because: 1) The sub-

The Computer Journal/Issue .31

C CODE FOR THE PC
source code, of course

.
, ..

I .~

, .~

, ,

$400
$325
$325
$300
$295
$200
$165
$160
$160
$150
$150
$150
$135
$115
$115
$100
$100
$100
$100
$100

$95
$90
$80
$80
$75
$65
$60
$60
$60
$50
$50
$50
$50
$50
$45
$40
$40
$35
$30
$30
$30
$30
$30
$25
$25
$25
$25
$20
$20
$20
$20
$20
$20
$15

$275
$150

$60
$60
$35
$30
$30
$20
$15
$15

Voice: (51£) £58-0185
BBS: (51£) £58-8831

FidoNet: 1:38£/1£
MasterCard/VISA

C Source Code
Bluestreak Plus Communications (two ports, programmer's interface, terminal emulation)
CQL Query System (SQ~ retrievals plus windows) .
GraphiC 4.1 (high-resolution, DISSPLA-style scientific plots in color &; hardcopy) .
Barcode Generator (specify Code 39 (alphanumeric), Interleaved 2 of 5 (numeric), or UPC)
Greenleaf Data Windows (windows, menus, data entry, interactive form design)
Vitamin C (MacWindows) .
resident C (TSRify C programs, DOS shared libraries)
Essential C Utility Library (400 useful C functions)
Essential Communications Library (C functions for RS-232-based communication systems)
Greenleaf Communications Library (interrupt mode, modem control, XON-XOFF) .. .
Greenleaf Functions (296 useful C functions, all DOS services) .
OS/88 (U**x-like O/S, many tools, crosl-development from MS-DOS) .
Turbo G Graphics Library (all popular adapters, hidden line removal) ..
CBTree (B+tree ISAM driver, multiple variable-length keys)
MuitiDOS Plus (DOS-based multitasking, intertask mellaging, semaphores)
PC/IP (CMU/MIT TCPlIP implementation for PCs)
B-Tree Library &; ISAM briver (file system utilities by Softfocns)
The Profiler (program execution profile tool)
Entelekon C Function Library (screen, graphics, keyboard, string, printer, etc.) .
Entelekon Power Windows (menus, overlays, messages, alarms, file handling, etc.) .
Wendin O/S Construction Kit or PCNX, PCVMS O/S SheIla.
QC88 C Compiler (ASM output, small model, no longs, floats or bit fields, 80+ function library)
JATE Async Terminal Emulator (includes file transfer and menu subsystem)
MultiDOS Plus (DOS-based multitasking, intertask mellaging, semaphores)
ME (programmer's editor with C-like macro language by Magma Software)
WKS Library (C program interface to Lotus 1-2-3 program &; files) .
Quincy (interactive C interpreter) .
EZ-ASM (assembly language macros bridging C and MASM) .
PTree ~arse tree management) .
HELP pop-up help system builder) .
Multi- ser BBS (chat, mail, menus, sysop displays; uses Galacticomm modem card)
Heap Expander (dynamic memory manager for expanded memory) .
Make (macros, all languages, built-in rules) .
Vector-to-Raster Conversion (stroke letters &; Tektronix 4010 codes to bitmaps)
Coder's Prolog (inference engine for use with C programs) . . .
C-Help (pop-up help for C programmers ... add your own notes)
Biggerstaff's System Toola (multi-tasking window manager kit) .
CLIPS (rule-based expert system generator, Version 4.0)
TELE Kernel (Ken Berry's multi-tasking kernel)
TELE Windows (Ken Berry's window package) .
Clisp (Lisp interpreter with extensive internals documentation)
Translate Rules to C (YACC-like function generator for rule-based systems)
6-Pack of Editors (six public domain editors for use, study &; hacking) . . .
ICON (string and list procelling language, Version 6 and update)
LEX (lexical analyser generator) .
Bison &; PREP (YACC workalike parser generator &; attribute grammar preprocessor)
AutoTrace (program tracer and memory trasher catcher) .
C Compiler Torture Test (checks a C compiler against K &; R) .
Benchmark Package (C compiler, PC hardware, and Unix system) .
TN3270 (remote login to IBM VM/CMS as a 3270 terminal on a 3274 controller)
A68 (68000 cross-assembler)
List-Pac (C functions for lists, stacks, and queues) .
XLT Macro Processor (general purpose text translator)
C Tools (exception macros, wc, pp, roff, grep, printf, hash, declare, banner, Pascal-to-C)
Data
WordCruncher (text retrieval &; document analysis program) .
DNA Sequences (GenBank 48.0 of 10,913 sequences with fast similarity search program)
Protein Sequences (5,415 sequences, 1,302,966 residuals, with similarity search program)
Webster's Second Dictionary (234,932 words) .
U. S. Cities (names &; longitude/latitude of 32,000 U.S. cities and 6,000 state boundary points)
The World Digitized (100,000 longitude/latitude of world country boundaries)
KST Fonts (13,200 characters in 139 mixed fonts: specify 'lEX or bitmap format)
USNO Floppy Almanac (high-precision moon, sun, planet &; star positions) .,
NBS Hershey Fonts (1,377 stroke characters in 14 fonts)
U. S. Map (15,701 points of state boundaries)

The Au"tin Code Work"
11100 uafwood lAne
AU8tin, Texa8 18150-3-409 USA acw!infoOuunet.uu.net
Free surface shipping on prepaid orders

r----------,
I Now the FULL .oorce code for roliO ' ••cal I ••v.ll.ble for the 1111-,CI I

WHAT. you are.' J I I 'ryl ng '0 de bug wi thou' .ource code 7 But why 7 Source
Code Gener.tor. (SC.G-.) provide completely co ented .nd l.beled ASCII I

I :::.cea:~l::a::l:::le C::rb:h:dlf::~O:nldng":::dbul:td.:and U~~TEh:ST::~~de.t thing I I
ever did .ee ••• "

I
TURBO Pa.cal (IBM-PC)· $ 67.50 Pournelle, BITE
TURBO P••cal (Z-BU)* ••••••••••• $ 45.0U
CP/M 2.2 ••••••••••••••••••••••• $ 45.00 "I have .een the

I
-CP/M 3 $ 75.00 orlgln.1 .ource and I
- * A fast assembler 1s 1nc:,Juded ff"eel yours 18 much betterl"

Anony~ou8. OC VI
The following are general purpo.e dl.a••embler.: I

I Ma.terful DI ••••embler (Z-BO) •• $ 45.00
- UNREL (relocatable fllea) (B080) $ 45.00~ •

I ~;:;~~/:~~:~------;~;;~~;/~:~;;~~--;--;~;~- II
~~# T~ $

exp1 rea I-=- -- -- Total $== 0 "II. Cod. I",.t.ul" II AI I product••re ful I y guaranteed. DI.k for... t. B" (), 5" (, ype).

,=~~..,_~~~_~~~~'=-~~~~~~~~~ I
CP/M and TURBO Pascal Rre trade ..ark. of Digital Re.earch & Borland Int.~..,...----....-

ject is very broad with widely differing
requirements for different applications, so
that there is not one simple answer. 2) The
people who have the experience and
knowledge to provide the answers are too
busy to take the time to write.

I feel that designing user interfaces is an
art rather than a science, and that we have
to experience a wide range of existing
products running on many different
systems in order to develop a intuitive
feeling for what will work. We also need
to talk to other developers and share our
thoughts on what works, what doesn't
work, and how to implement our ideas.
We should first concentrate on generic
ideas which are not system specific,
because we'll all be working on many dif
ferent systems in the future. After we
know what we want, we'll talk about how
it can (or perhaps how it can't) be accom
plished on the various systems.

An example of good and bad user inter
face which I ran into this week is how a
program reacts to the printer being off
line when the program tries to access it.
Working with ZCRP3 on an AMPRO Z80
Little Board, WordSta~ CPIM Edition
Release 4.0 allows me to enter a Control
U to return to WordStar. An older version
of CalcStar waits for a while, and' then
returns to the program with a message
about checking to be sure the printer is
ready. Both of these are fine, but I had
another program which locked up and
would not return even if the printer was
later placed on line - you had to reboot
the system which meant that you lost what
ever you were doing. I would normally
think of implementing this through a
BIOS modification, but obviously it can
be done through the program, and I'll
have to figure out how to do this in

various languages (HINT: Tell us how you
do it with your systems).

One of the things which has been
delaying the user interface project is that I
have discovered that I am not adept at
parsing the user input. I especially have
trouble providing for the variations and
errors in the input. Every time I get star
ted on this project, I find that I have to
start somewhere else first. Perhaps this is
an example of top-down design, where I
first decide what I want to do, then decide
what routines I'll need, then decide what
routines those routines will need, then
decide what routines ... I'm making great
progress backwards!

Right now, I'm off on a side track in
vestigating the use of YACC (Yet Another
Compiler Compiler) and LEX (LEXical
Analyzer) to provide the parsing routines
for C programs [LEX plus BISON (a
YACC workalike) are available with C
source code for the IBM PC from Scott
Guthery, The Austin Code Works, 11100
Leafwood Lane, Austin, Texas 78750
3409, phone (512) 258-0785]. I'd like to
know if it is practical to use LEX and
YACC to generate portable parser
routines which can be compiled under
CP1M, PC DOS, or 68000 systems.

Programming Tools
Programmers and system implementors

need a highly coordinated toolkit with
much more than just the normal editors,
compilers, and assemblers. ZCPR33
provides an amazing amount of power
from a Z80, but there are times when I
need more power than is available from an
8-bit system. I have never been comfor
table with PC/MS DOS, because it is
awkward with many utilities and TSR
(Terminate and Stay Resident) programs

which don't work well together - you can
do almost anything, but you have to do it
one step at a time with different programs
and it is difficult to pipe data from one
program to another.

Two of our boys made it home for
Christmas this year, and we spent a week
enjoying the winter splendors in nearby
Glacier National Park and the surroun
ding mountains, plus hot and heavy
debates (arguments??) about computers.
Dave is very aware of my dislike for PC
DOS, so he demonstrated The MKS
Toolkit (Mortice Kern Systems Inc., 35
King Street North, Waterloo, Ontario,
Canada, N2J 2W9 (519) 884-2251). Their
ad states "Spans both worlds UNIX~
DOS," and while I am not currently in
terested in a UNIX machine, and I don't
like PC-DOS, I do like the combination of
the MKS Toolkit running under PC-DOS.
The toolkit includes the UNIX VI/EX
editor, the KORN Shell, AWK, and over
110 UNIX commands such as cpio, find,
sum, tr, tee, gres, fmt, login, Is, Ie, etc.
Dave demonstrated some of the utilities
and how to write scripts operating under
the shell, and then I took the computer
away from him and stayed up late en
joying the toolkit. Dave got even for my
taking away the computer by taking the
toolkit back with him. It's only $139, and
I'll have to get a copy of my own. Inciden
tally, it works fine on my AMPRO '186
Little Board under PC-DOS Version 3.10
using a Zenith Z19 ASCII terminal
none of the distracting graphics which I
hate. If you use a PC for anything other
than canned commercial programs, you
owe it to yourself to take a look at the
MKS Toolkit.

The C Users' Group Expands
The C Users' Group has acquired The C

Journal, and combined it with The C
Users' Group Newsletter, to form The C
Users Journal. Robert and Donna Stucy
Ward are to be congratulated on the first
issue of their new publication. It is now
even more important for anyone in
terested in programming in C to join The
C Users' Group to get their journal and
access to the extensive CUG disk library.
You can contact them at The C Users'
Group, P.O. Box 97, McPherson, KS
67460, phone (316) 241-1065.

Their articles on LEX and YACC are
very timely, because that's what I am
currently working on. •

4 The Computer Journal/Issue *31

Feedback

HD64180 MMU Feedback
John Schneider's article in TCJ 1#27 on

the HD64180 is very informative and
useful, but I have just discovered an error
in it that I would like to share with the
readers. It concerns the section on the
Memory Management Unit (MMU), in
particular, the Common Base Register
(CBR).

Schneider states that if "You want to
switch a block of memory starting at
physical address SOOOOh into the Common
Area 1 segment (at the same time swit
ching out whatever was there) .. , the CBR
register would be loaded with SOh. It's
that simple. "

No it isn't. That statement is only true
if a CBAR value of 0 is used. (That is the
Common Area 1 takes up the entire
logical area beginning at logical 0000.) For
example, if the mapping shown further
down on P.26 is in effect where the com
mon area 1 occupies the upper 32K of
logical memory and the bank area the
lower 32K, then a CBR value of SOh will
load physical memory from S8000h to
SFFFFh into the logical space from SOOOh
to FFFFh. The rule is that the CBR value
is ADDED to the upper 4 bits of the
logical address and this 7-bit value forms
the upper 7 bits of the 19-bit phyiscal ad
dress. The other twelve bits are simply the
lower 12 bits of the logical address.

The same rule applies to the BBR,
although in most typical applications the
Base area starts at logical 0, so the method
Schneider gives will work.

So then, to complete the example, if we
want a Common Area beginning at
Logical address SOOOh to contain physical
addresses starting at SOOOOh, we must put
the value 48h into the CBR. 48 h is added
to 8h (the upper 4 bits of the logical ad
dress) to yield SOh, which will load the
physical addresses from SOOOOh into
logical memory at SOOOh.

Steve Cohen
Editor's Note: Steve, thanks for the

feedback. One of the primary purposes of
TCJ is to provide a forum for our readers
to exchange information.

The Computer Journal/Issue '31

Reader's

Couulting In tbe Real World
I am looking forward to the Lilliput Z

NODE. Some other BBS's I use are the
Morrow Owners Review BBS at 1-415
654-3798, BAMDUA (Bay Area Micro
Decision Users Association, another
Morrow Group) at 1-415-948-2513,
PRACSA at 1-415-948-2513 (this is run by
Irv Hoff, who wrote IMP), Turbo Source
Search at 1-617·545-9131 (this is a BBS
that specializes in Source Code), and an
MS-DOS oriented BBS, the Software
Society, at 1-201-729-7410.

I appreciate being abreast of the trends
in hardware and software. I do mostly
fmancial applications programming. I
have freelanced on and off for about four
years. My primary languages that I use are
basic, and Turbo Pascal.

I appreciated Bill Kibler's column of
PC's, sales of PC's lack of training, and
the importance of users to outline their
needs. I have been directly in that type of
position. It doesn't just happen with PCs.
I had a pension planning firm try to use a
NorthStar computer running three users
under TSS/C, (NorthStar's version of
MIPM) to do all of their pension accoun
ting for their clients. Bill's suggestion that
the client write-up what they need sounds
really good, but it doesn't work that way.
Most clients don't know enough about
computer systems to write-up clearly what
they want, if they did they wouldn't be
going to a consultant in the fust place.
Clients can get hold of demo packages
relatively cheaply. Often though, the
clients don't even understand the demo
packages, because they have never worked
with a computer system before, or their
experience is limited to a flXed pattern. I
had a bookkeeper ask me to explain an
accounting package, which I did to the
best of my ability, then it was the
bookkeeper's turn to come up with a chart
of accounts. This was completely beyond
the bookkeeper's ability. This is not a
computer problem, this is a training
problem or lack of skills, that gets shuf
fled off by saying the computer can't do
it, or that the programmer can't explain it
simply. I could have done the chart of ac
counts, but I wasn't going to, because I

didn't want to run over the accountants.
Also, clients are not always as innocent as
Bill states they are. Clients will try to use
two consutants at the same time and
juggle one against the other. Clients also
try to have the consultant do the biggest
jobs fust, rather than starting with small
jobs and working up. They also want con
sultants to do everything at once.

I would like to see more MS-DOS ar
ticles, because most of my work is in pes.
I have a Morrow at home, but it doesn't
pay the bills.

R.U.

Editor's Note: 77uznk you for sharing
yourexperiences.. How about more ofyou
sharing your experiences?

There are so many publiCiltions
covering the Pes and MS-DOS, that I felt
that there wasn't much we could add. The
fact is that we have to work with the Pes
to pay the bills, and I am not entirely
against including technical PC topics
which are not duplicated elsewhere.
SpecifIC suggestions on PC topics will be
welcome.

I understand that the Morrow Owners
Review is defunct, and that their BBS may
be closed orpossibly transfered to another
location. Does anyone have any infor
mation on this?

Wants "Case HIstory"
My wife and I have three computers in

use. A Macintosh SE, an Apple lIe, and
an SB-18OFX which runs Echelon's Z
System software.

I enjoy the hardware oriented articles
the best, and material on using assembly
language as well.

What would I like to see in TCJ? How
about some "case History" type articles
on how someone has incorporated an
Ampro Little Board, SB180 or one of the
Hawthorne 68K boards into a "real"
project. Emphasis on the "real" and not
just what the marketing types claim can be
done. Talk about the software as well. It
seems like one of these boards would be a

(Continued on page 41)

5

, I

i,;'"

It

i .~

,

Using SCSI fQr Generalized I/O
SCSI Can be Used for More Than Just Hard Drives

by Rick Lehrbaum, Vice President Engineering, Ampro

+-------.-------+-------+-------+-------+-------+-------+-------+
:Assert : Arb in: Lost :Assert :Assert :Assert ;Assert :Assert :
: RST : Prog : Arb : AO<. : BSY : SEL : ATN : Data :
+-------+-------+-------+-------+-------+-------+-------+-------+

tnit j ator Command Reg j s ter -- Read Usage

Bit 7 6 5 3 2 1 Bit 0
+-------+-------+-------+-------+-------+-------+-------+-------+
: DB7 : DB6 : DB5 : DB4 : DB3 : DB2 : DB1 : DBO :
+-------+-------+-------+-------+-------+-------+-------+-------+

SCSI Data Regl ster

Bit76 5 4 BltO
+-------+-------+-------+-------+-------+-------+-------+-------+
:Assert : Test : Di f f :Assert :Assert :Assert :Assert :Assert :
: RST : Mode : En : AO<. : BSY : SEL : ATN : Data :
+-------+-------+-------+-------+-------+-------+-------+-------+

Initiator C~nd Register -- Write Usage

When you read this I/O port, the value obtained represents the
current state of the SCSI bus data lines, DBO through DB7, except
that the actual voltages on the bus lines are inverted relative to the
contents of this register.

Initiator Command Register (01, read/write): This register is
primarily used to control the 5380's SCSI bus interface when the
chip is in the Initiator role. Most functions are also available in
the Target role. T\\o of the bits of this register have different uses
when the register is read or written, so two charts are given. These
are as follows:

Bit 0236Bit 7

Inside the 5380
The 5380 has 17 bidirectional I/O lines, which may be used as

inputs or outputs under software control. It also offers several
more advanced features including interrupts,
request/acknowledge handshaking, and DMA support. These
advanced features are intended specifically for SCSI, so they are
not very flexible; however you may find one or more of them
useful in a particular application.

To fully understand the 5380 SCSI Protocol Controller device,
you should obtain a copy of the NCR 5380 Design Manual,
available for a nominal charge from NCR (see reference below).
In this article, we will only focus on the simple I/O functions.

Within the 5380 are eight readable and eight writable internal
ports, normally addressed as eight consecutive I/O addresses.
What follows next is a brief description of the function of each of
the 5380's internal registers. The I/O addresses indicated are the
normal offsets from the 5380's base address in your system. Note
that all of the SCSI bus signals (at the 5380 IC's pins) are "active
low," so the actual bus voltage levels are opposite to the contents
of the corresponding bits in the 5380 registers.

SCSI Data Register (00, read/write): Writing to this register in
the 5380 sets the state of the SCSI bus data lines (DBO through
DB7), providing that the "Assert Data Bus" bit of the Initiator
Command Register is set. If you write to this register when the
Assert Data Bus bit is not set, the register will hold your data but
not assert it on the SCSI bus until the Assert Data Bus bit (in the
Initiator Command Register) is set at a later time. The SCSI Data
Register's data bits are assigned as follows:

COPYRIGHT© 1988, AMPRO COMPUTERS INC.-ALL
RIGHTS RESER VED

Printed with permission.

SCSI Catches On!
Over the past two years, the Small Computer System Interface

("SCSI") has begun to be included as a standard feature in the
microcomputer pr
Apple) and board manufacturers (such as AMPRO). This is a
result of three factors:

(1) SCSI has finally been approved by the American National
Standards Institute (ANSI X3.131).

(2) Single chip SCSI interface IC's such as the NCR 5380 have
become common and inexpensive. (The 5380 already has at least
five alternate sources.)

(3) Hard disk drives such as the Seagate 225N and tape drives
such as the Teac MT2ST are now available with "embedded"
SCSI controllers.

Thanks to the ease of integration and very low cost of including
a SCSI interface (due to devices like the 5380), designers of
microcomputer products (systems and boards) now routinely in
clude a SCSI bus controller.

Another Way to use a SCSI Port
In a lot of data acquisition and control or embedded

microcomputer applications, the SCSI port may go unused. If
your system's SCSI bus is not required for "normal" SCSI device
connection, you may be able to use the SCSI interface port as a
generalized I/O interface instead.

The ability of a SCSI interface to be used for other types of I/O
depends entirely on the hardware that is being used to generate
the SCSI bus signals. Some SCSI interface IC's are quite "in
telligent," while others are relatively "dumb." In general,
because the dumb SCSI IC's require lower level control by the
system CPU, they provide more direct CPU control over each of
the SCSI interface signals than do the smarter IC's. Therefore,
the dumber the SCSI re, the more likely it is to be useful as a
programmable I/O port. On the other hand, some of the smarter
SCSI IC's are too ~pecialized to allow this flexibility.

This article discusses the use of a 5380 SCSI controller IC as a
generalized I/O interface. The 5380 offers nearly total control
over the 17 signals which comprise the SCSI bus. Although the
5380 was not designed to serve as a general purpose I/O port, it
has several important features which make it well suited for this
purpose:

• Open collector output buffers, with 48 rnA
current sink capability.

• Schmidt-trigger conditioning on input buffers.
• Simple CPU bus interface with DMA logic.
• Seventeen software controlled I/O signals.
• Handshake and interrupt logic (usable in some

applications).

8 The Computer Journal/Issue *31

As you have probably guessed. the Initiator Command Register
allows you to control the state of the RST. ACK. BSY. SEL. and
ATN bus signals. and also to control whether the 5380 places its
data on the SCSI bus or not. Notice that bits 6 and 5 differ accor
ding to whether you are reading or writing this register. (Refer to
the 5380 Design Manual for details on the use of these bits.)

Here are three restrictions in using these bits to control the SC
SI bus:f

(I) The 5380 must be in Initiator Mode (Mode Register. bit 6) to
be able to set the SCSI control bits ACK and ATN active on the
SCSI bus.

(2) If the 5380 is in Initiator Mode (Mode Register. bit 6), then
the data bus will not be asserted by the Assert Data Bus bit (Bit 0)
unless the SCSI bus I/O signal is false (output from Initiator) and
the SCSI bus control signals C/D, I/O, and MSG all match the
contents of the Assert bits in the Target Command Register.

(3) When the Assert RST bit is set, the resulting RST signal on
the SCSI bus clears all of the 538O's internal registers! (Not a very
useful general purpose signal. is it?)

Mode Register (02, read/write): This register contains many
control signals governing operation of the 5380. It allows you to
place the chip in either Initiator or Target mode, and provides
control over DMA and arbitration functions. parity. etc.

Bit 7 6 5 4 3 2 1 Bit 0
+-------+-------+-------+-------+-------+-------+-------+-------+
:Block : Target: Enab'e:Enable :Enable :Monltor: OMA : Arbi- :
:Mode : Mode : Parlty:Parlty: EOP : BSY : Mode : trate :
:OMA: : Check :Int : Int : :
+-------+-------+-------+-------+------+-------+-------+-------+

Mode Reg I ster

This article will not cover the use of the bits regarding DMA,
parity, arbitration, and interrupts, as these are not required for
basic operation of the SCSI interface. Bit 6 is the most interesting
bit of this register, because it determines whether the 5380 is in
Target Mode or Initiator Mode.

Target Command Register (03, rnd/write): This register
provides control over the bus phase control bits: REQ, MSG,
C/O, and I/O, as follows:

Bit 7 6 5 4 3 2 1 Bit 0
+-------+-------+-------+------+-------+-------+-------+-------+

: Assert: Assert: Assert: Assert:
: : REQ : MSG : C/O : I/O :
+------+-----+-------+-------+------+-------+-------+-------+

Target Command Regi ster

These bits can only be asserted by the 5380 if the "Target
Mode" bit in the Mode Register is set. In Initiator mode, these
bits have a different purpose. In Initiator Mode, the states of the
Assert MSG, Assert C/D, and Assert I/O bits must match the ac
tual state of the bus (which can be read in the Current SCSI Bus
Status Register), for data to be placed on the SCSI bus even if the
Assert Data Bus bit of the Initiator Command Register is set.
Also, in Initiator Mode, if the Assert MSG, C/D, and I/O bits do
match the bus state, then the "Phase Match" bit in the Bus and
Status Register will be set.

Select Enable Register (04, write): This write-only register is
used as a mask in Target Mode operation to allow the 5380's
built-in selection response logic to generate an interrupt. Refer to
the 5380 Design Manual for more info.

Bit 7 6 5 4 3 2 1 Bit 0
+-------+-------+-------+-------+-------+-------+-------+-------+
: DEl7 : DB6 : DEl5 : DB4 : DEl3 : DEl2 : DEll : DElO :
+-------+-------+-------+-------+-------+-------+-------+-------+

Select Enable Register

Bit 7 6 5 4 3 2 Bit 0
+-------+-------+-------+-------+-------+------+-------+-------+
: RST : BSY : REO : MSG : c/o : 1/0 : SEL : DBP :+-- + + + + + + --+-------'t'

Current SCSI Bus Status Register

DMA Control Ports (OS-07, write): These are not registers but
rather are used as control signals by the 5380's internal DMA
logic. A write operation to one of these thrcoe I/O addresses is
used as a trigger to begin the corresponding DMA mode (Se~d,

Target Receive, or Initiator Receive). Refer to the 5380 DesIgn
Manual for more information on the use of DMA.

Bus and Status Register (OS, read): This read-only register
allows you to read two SCSI bus signals-ATN and ACK-which
are not included in the Current SCSI Bus Status Register. In ad
dition, six 5380 status flags which are associated with the optional
use of interrupts are read through this register. The bits of this
register are utilized as follows:

Bit 7 6 5 4 3 2 I Bit 0
+-------+-------+-------+-------+------+-----+-------+------+
: End : OMA : Parity: Inter- : Phase: Busy : ATN : ATN :
: 01 :RequesT: Error : rupt : MaTch : Error : : :
: OMA: : :Request : : :
+-------+-------+-------+-------+------+-------+-------+------+

Bus and Status Regi ster

As mentioned above, the use of DMA and interrupts is not
covered in this article. The "Phase Match" bit is handy, in that it
shows in a single bit whether the SCSI bus phase matches the set
tings of the Assert bits (MSG, C/D, and I/O) in the Target Com
mand Register. The Phase Match bit is only meaningful,
however, when the 5380 is in its Initiator Mode ("Target Mode"
bit = 0).

The Busy Error bit is set if the Monitor Busy bit in the Mode
Register has been set and if the SCSI bus BSY signal becomes
false. If this occurs, the 5380 output drivers all become disabled.

Latcbed Data Register (06, rnd): Reading this register returns
the latched-not current-state of the SCSI data lines. Data is
latched either during a DMA Target Receive operation when
ACK (pin 14) goes active, or during a DMA Initiator Receive
when REQ (pin 20) goes active. The DMA Mode bit in the Mode
Register must be set before data can be latched in this register.
This register may also be read under DMA control using the
538O's DMA control lines. The contents of this register are:

Bit 7 6 5 4 3 2 1 Bit 0
+-------+------+-------+-------+-------+------+------+-------+
: DEl7 : DB6 : DEl5 : DB4 : DEl3 : DEl2 : DEll : DBO :
+------+------+------+-------+-------+-------+-------+-------+

Latched Oata Reg I ster

Reset Parity Interrupt (07, rnd): A read of this address is used
as a trigger to clear a parity error interrupt.

Simple I/O
As indicated above, the 5380 has two operating

modes-Initiator Mode and Target Mode-and in Initiator Mode
several constraints govern whether or not data from the 5380 can
be placed on the SCSI bus signals. If the 5380 is used in the Target
mode, however, these constraints are not applicable. Consequen
tly, the 5380's Target mode results in more flexible operation for
simple programmable digital I/O.

The 5380 is placed in Target mode by writing 40h to its Mode
Register. Once in Target mode, fourteen of the chip's SCSI bus
I/O signals can be used as bidirectional lines with either input or
output capability, and two additional lines can be used as input
only lines. Table I gives the breakdown.

Table I
5380 Target Mode Usage

i ~

, .

Current SCSI Bus Status Register (04, read): This read-only
register allows you to read the current state of eight control
signals on the SCSI bus. The bits are utilized as follows:

The Computer Journal/Issue '31

5380 Register
SCS I Data Reg i ster
Target Command Register
Initiator ComMand Register
Initiator Command Register

Signals
DBO-DEl7
I/O.C/o.MSG,REQ
BSY.SEL
ACK.ATN

Function
Bidirectional
Bidirectional
Bidirectional
Input only

7

Tob Ie 2

puts. Because the 5380's outputs are open collector (and active
low), a bit which is a 0 will not drive the bus at all, leaving the
corresponding data line free to be driven by an input module.

Controlling an IC
Using the signals illustrated in Table I creatively, you can even

hook them up directly to other IC's. You can redefine any signal
as any desired function. For example, some signals can function
as address signals, others as control signals, still others as data
signals.

Many IC's are not too fussy about timings as long as minimum
setup and hold times are provided. Using a technique known as
"bit banging," you can easily satisfy a device's setup and hold
requirements.

Interfacing to a Typical LSI Device.
As an example, a typical LSI device (such as a UART) might be

interfaced to a 5380 as shown in Table 2.

Before going on, a word about logic levels. The SCSI bus uses ac
tive low logic levels (i.e., a "0" is the high voltage level and a "I"
is the low voltage level). Assuming that the LSI device is "nor
mal," it probably requires active high data and address inputs,
but active low control signals (-RD,-WR,-CS). Since the 5380 will
make everything active low, the data and address values written to
the 5380's registers must be inverted prior to writing to such a
device.

In this example, the following sequence might be used for
writing to a register within the LSI device:

(1) Write a 40h to the Mode Register, to place the 5380 in
Target Mode.

(2) Invert the LSI device register address, and then write it to
the 110, CID, and MSG bits in the Target Command Register
while also setting the REQ bit (chip select) to I.

(3) Invert the data to be written, and then write it to the SCSI
Data Register.

(4) Enable data output by writing an Olh ("assert data bus") to
the Initiator Command Register.

(5) Tum on the -WR signal by writing an 05h ("REQ" with
"assert data bus") to the Initiator Command Register.

(6) Remove the -WR signal by once again writing an Olh to the
Initiator Command Register. This provides write data hold time.

(7) Remove the chip select and address by writing OOh to the
Target Command Register.

(8) Disable data output by writing OOh to the Initiator Com
mand Register.

You will want to modify this procedure slightly, based on the
actual requirements of the particular LSi device you need to con
trol. A similar process is used to read the device.

Synthesizing a BUS
Another interesting and potentially powerful use of a 5380 SC

SI interface is in mimicking the functions of a bus. Although you
can't expect to generate anything as complex as a Multibus or
VME bus, there are several simple 1I0-oriented buses which can
be synthesized adequately using just the 5380 and a scramble
wired cable between the 5380 and the bus cards or backplane.
Two bus interface examples follow.

As indicated in Table I, ACK and ATN are inputs only in the
5380's Target Mode of operation. All of the other SCSI signals
except RST can be used as either inputs or outputs. RST is unique
in that it clears all of the registers within the 5380 whenever it
becomes active for any reason (including being set by the 5380 it
self!). In most applications you will probably want to avoid using
the RST signal entirely-but be sure it is terminated along with
the other I/O interface signals.

The data lines (D8O-DB7) are only enabled as outputs when bit
o("Assert Data Bus") of the Initiator Command Register is a 1.
However, the state of the D8O-DB7 lines can be read whether the
Assert Data Bus bit is true (1) or not. Since the data lines are Open
Collector, they can be switched from output to input functions
simply by writing all O's to the SCSI Data Register. (The chip's
outputs are inverted, so setting a data bit to 0 turns the output
driver off.)

It is also possible to utilize the 5380's internal interrupt,
REQIACK, and DMA support logic. For example, one 5380 user
has taken advantage of the chip's handshake and interrupt fun
ctions to monitor the data transmitted by a computer's Cen
tronics printer port, using the 5380 as an interrupting 8-bit input
port.

In many 5380-based SCSI systems, there are additional input
signals intended for the reading of SCSI Initiator ID jumpers. For
example on the AMPRO Little Board single board computers, up
to eight additional input bits are available in this manner if the
5380 is not being used as a SCSI port. If available, these extra in
put signals can be used to augment the signals provided by the
5380, thereby adding up to eight additional input lines.

Along the same lines, don't overlook an unused parallel printer
port as a source of eight more buffered outputs and one or more
output and input handshake signals.

As you can see, a 5380 SCSI interface provides quite a few 110
signals. The 48 rnA output drive capacity allows long wire lengths,
and also can be used to drive both mechanical and solid state
relays.

Using Opto-22 I/O Modules
Opto-22~ manufactures several types of "Mounting Racks"

into which you can plug optically isolated input and output
modules. Each module functions as either a single input bit or a
single output bit, and the modules are available in both AC and
DC versions. Voltages of up to 240 volts DC or AC can be swit
ched or sensed, and the modules provide 4,000 volts isolation!

Opto-22's Mounting Racks hold either 4,8, 16, or 24 optically
isolated modules, and have model numbers PB4, PB8, PBI6, and
PB24, respectively. Since the 5380 provides a maximum of sixteen
interface signals (as shown in Table I), a single 5380 could inter
face with up to 16 such 110 modules, using a PBI6 Mounting
Rack.

To interface a 5380 with the Mounting Rack's optically isolated
input or output modules, simply connect each SCSI bus signal
(from the 5380) to an appropriate pin on the Mounting Rack's
edgecard connector. This can be done by constructing a custom
"scramble-wired" cable, or you can use a small customizable
adapter card made by Opto-22 for this purpose, the Model
UCA3. The UCA3 can accept a 50-pin header edgecard connector
from the SCSI side, and plugs directly into the Opto-22 Mounting
Rack. The UCA3 has user-programmed connection between the
input and output bus sides-that is, it provides two 50-pin
headers with wire-wrap posts which you wire to suit your needs.

The Opto-22 Mounting Rack can accommodate a mixture of
input and output modules on the same rack. It is even possible to
have a combination of input and output modules connected to the
eight SCSI data lines (DBO-DB7) at the same time. To allow some
of the data lines to function as inputs while others function as
outputs (at the same time), keep the Assert Data Bus bit in the
538O's Initiator Command Register active at all times, and write
O's to any bits in the SCSI Data Register that are to be used as in-

Device Pin
00-07
"0,"1,"2
-RO,-WR
-CS

LSI Device Interfoce

Function
Ooto Inlout
Interno I reg I ster oddress I ng
Read and write (active lowl
Chip select (active lowl

SCSI Signol Used
-080 through -087
-I/O,-c/O,-MSG
-SEL,-eSY
-REQ

8 The Computer Journal/Issue '31

, ~

Table 4

PAHUX/SCSI Interface

PAHUX Signa I Pin Function SCSI Signal Pin
00 47 Data In/out (Lsa) -080 -2-

01 45 Data Inlout -DB 1 4
02 43 Data I nlout -DB2 6
03 41 Data Inlout -oB3 8 .~

04 39 Data In/out -084 10
05 37 Data In/out -085 12
D6 35 Data Inlout -086 14
07 33 Data I nlout (Msa) -DB7 16
"0 1 Address (Lsa) -1/0 50
AI 3 Address -CIO 46
A2 5 Address -+lSG 42
A3 7 Address (Msa) "'lEQ 48
M 9 not used, tie low GROUND odd
"5 II not used, tie low GROUND odd
\/RITE 13 IIr I te Strobe -BSY 36
READ 15 Read Strobe -SEL 44
RST 49 not used. tie low GROUND odd
GROUNO even Signal Ground GROUKl odd

Interfacing to the"A-Bus"
Alpha Products Co. has developed a series of small, low cost

data acquisition and control cards based on a bus called the "A·
Bus". The A-Bus is easily generated by a 5380 SCSI controller IC.
A scramble wired cable or small ad~pter card (available from
Alpha Products) is all that is needed, to connect between a 5380
and one or more A-Bus cards.

A-Bus cards currently available from Alpha Products include:
analog-to-digital converters, digital I/O, stepper motor con
trollers, relay outputs, optically isolated inputs, and prototype
cards for custom interfaces. A five slot A-Bus motherboard is also
available, and multiple motherboards can be daisy-chained, so
quite a few A-Bus I/O cards can be connected to a single 5380
SCSI interface.

Table 3 gives the recommended signal mapping between the
538O's SCSI interface and the A-Bus backplane signals. Alpha
Products offers a small adapter card which provides this inter
connection, or you can wire a cable to do this yourself.

It is essential that you provide termination on the SCSI/A-Bus
bus, since the 5380 has open collector outputs. If you don't, you
will get unreliable results! However, the A-Bus devices are not
designed to drive the 220/330 ohm pullup/pulldown termination
normally used on the SCSI bus. Therefore, you must replace the
SCSI bus termination networks with higher resistance ter
minators. For example, you might replace the pullup/pulldown
networks with IK pullup devices instead.

Table 3

SCSI/"-Bus Interface

A-Bus Signal Pin Function SCSI Signal Pin
+12 Volts -1- iiOt'""US8d; no connect
-12 Volts 2 not used: no connect
GROUNO 3 Signa I Ground GROUND odd
+5 Vol ts 4 not used; no connect
INTERRUPT 5 not used; no connect
DO 7 Data I nlout (Lsa) -DBO 2
01 8 Data Inlout -DBI 4
02 9 Data Inlout -DB2 6
03 10 Data I nlout -DB3 8
04 II DG1'G i n/out -064 10
05 12 Data I nlout -DB5 12
06 13 Data Inlout -oB6 14
07 14 Data I nlout (Msal -DB7 16
AO 15 Address (LS8) -1/0 50
Al 16 Address -C/O 46
A2 17 Address -+lSG 42
A.3 18 Address (Msa) -REQ 48
-IN 19 Read Strobe -SEL 44
-OUT 20 \/r I te Strobe -BSY 36
ENABLE 0-3 21-24 not used: ground GROUNO odd

Although there are not enough 5380 output signals to generate
the four A-Bus "Enable" signals, the implementation shown in
Table 3 is sufficient to select as many as sixteen A-Bus cards. If
the Enable lines are required, you might consider pressing an
unused parallel port (e.g. Centronics printer port) into service.

The following two software listings contain typical assembly
language code which can be used to write to an Alpha products
RE-I40 relay output card, and read from an Alpha Products IN
141 optically isolated digital input card.

Interfacing to tbe Opto-22 ••PAMUX" Bus
Another example of a simple I/O bus which can be easily syn

thesized by a 5380 SCSI controller is the Opto-22 "PAMUX"
bus. Like the Alpha Products A-Bus, the Opto-22 PAMUX bus is
a simple parallel I/O bus with data, address, and read and write
control signals. Opto-22 offers an assortment of PAMUX analog
and digital I/O mounting racks. Up to 16 PAMUX mounting
racks can be daisy-chained on a single PAMUX ribbon cable bus,
and each PAMUX mounting rack can hold up to 32 I/O input or
output modules, resulting in up to 512 I/O points.

As with the Alpha Products A-Bus, all that is required to tie a
5380 SCSI bus to the PAMUX bus is a scramble-wired 50 conduc
tor cable. A suggested wiring scheme is given in Table 4. The Op
to-22 Model UCAJ "kludge card" can be used to make the bus
to-bus conversion, as described in Example I.

The Computer Journal/Issue *31

Although there are not enough 5380 output signals to generate
all six PAMUX address signals, the implementation shown in
Table 3 is sufficient to select up to 128 I/O points (32 I/O's on up
to four PAMUX mounting racks). If more address lines are
required, they may be able to be provided by an unused parallel
port (e.g. Centronics printer port) into service. Be sure to ground
A4 and A5 in your adapter cable (or on the UCA3).

The software routines needed to interface with the PAMUX
modules are similar to those indicated in Example 3 for the A
Bus.

Here are a few differences from the A-Bus example:

(I) The PAMUX module bits can individually be inputs or out
puts. As mentioned in Example I, you can support a mixture of
input and output modules in the same 8-bit group by writing O's
to the bits in the 5380's SCSI Data Register bits that are to be used
as inputs so that those bits on the data bus are free to be driven by
the PAMUX input modules.

~~
CALENDAR/CLOCK

KIT

Still Onll/
$69. 00

• Works with any Z-80 based computer.
• Currently being used in Ampro. Kaypro

2. II & 10. Morrow. Northstar. Osborne,
Xerox. Zorba and many other computers.

• Piggybacks in Z80 socket.
• Uses National MM58167 clock chip.
• Battery backup keeps time with CPU

power off!
• Optional software is available for file

date stamping, screen time displays,
etc.

• Specify computer type when ordering.
• Packages available:

Fully assembled and tested $99.
Complete kit $69.
Bare board and software $29.
UPS ground shipping $ 3.

MASTERCARD, VISA, PERSONAL CHECKS,
MONEY ORDERS & C.O.D.'s ACCEPTED.

N.Y. STATE RESIDENTS ADD 7% SALES TAX

KENMORE
COMPUTER
TECHNOLOGIES

30 Suncrest Drive. Rochester. ~.Y. 101609 (71616501·7356

9

, .~

'1

• j

, I

Listing 1. Relay Output Cord Interface

........................•......•..•...•.............~.........•...........

PROGRAM:
; This a simple somple program Intended for the relay output cord.
; It switches each relay on In sequence, and loops Indefinitely.

LXI B,oool

This Is a demo of the Alpha products relay output cord
using their SCSI adopter. The code Is meant to run on
on AMARO Little Board/Z80 Z80-based single board system.

Written 12/01/87 by Rick Lehrbaum

Assert the read strobe
Read the data
Invert It

Get the oddress fra. B
Invert It
Put the address on the bus

;Clear the reod strobe

;Set stack pointer

;Place the 5}80 In tar~et mode

;Dlsable all strobes and doto bus

C,A
A
CONTROLSREG

22H
40H
2}H
20H
21H
4

ADORESSSREG
A,READSBIT
CONTROLSREG
DATASREG

Interfoce
SP ,IOOOH
A
CONTROLSREG
A, TARGETSBIT
MOllESREG

EQU
EQU
EQU
EQU
EQU

7 6

;81t 6 used to put In torget mode.
;Value to write to MOllE
;Lower four bits used as AO-A}. Inverted.
;Elght bits of data. Inverted.
iUsed to control data transfer, as follows:

} 2 I 0

I l 1------ ASSERT DATA BUS when·
----------- READ STROBE when • I

--------------- WRITE STROBE when· I
these definitions. the read/write functions can use these values:

EQU OlH ;Assert doto bus. Write to CONTROL.
EQU OaH ;Assert write strobe. Write to CONTROL.
EQU 04H ;Assert read strobe. Write to CONTROL.

.....•....••............•...•...••...........•........................~...
This Is a demo of the Alpho products optlcolly Isolated Input
cord using the Alpha Products SCSI odapter. The code Is meont to
run on on AMARO Little Board/ZaO ZaO-based single board system.

This demo ~st be run from DDT or used os 0 subroutine by another
program.

Written 12/D}/87 by Rick Lehrbaum

Listing 2. Opta-Isolated Input Cord Interface

E~..•........•....................

DCX H
HOV A,H
ORI 0
JNZ DELOl
HOV A,L
ORI 0
JNZ DEL01
RET

Equates:

DELOt:

; Based on
ASSERTSBIT
WR ITESBI T
READSBI T

ORG 100H

iNIT:
; Initialize the 5}80

LXI
XRA
OUT
MVI
OUT

,
MOllESREG
TARGETSBI T
ADORESSSREG
DATASREG
CONTROLSREG

BIT

READ:
; Reods the dota byte from the I/O cord at the oddress In Register B
; ond returns the dato In register C

HOV A,B
CMA
OUT
MVI
OUT
IN

CMA
HOY
XRA
OUT
RET
E~..

write strobe

data bus

Loops forever

;Set stack pointer

;Place 5}80 In target mode

;Dlsable all strobes ond dato bus

;Get the oddress from B
;Invert It
;Put the oddress on the bus
;Get the data from C
; Invert It
;Wrlte It to the doto port

;Release the dato bus

;Clear the write strobe

C to the I/O cord at

ADORESSSREG
A,C

DATASREG
A, ASSERTSB IT
CONTROLSREG ;Assert the
A,ASSERTSBIT OR WRITESBIT
CONTROLSREG ;Assert the
A.ASSERTSBIT
CONTROLSREG
A
CONTROLSREG

WRITE
DELAY
B,0002
WRITE
A,C

C,A
LOOP

Interfoce
SP ,IOODH
A
CONTROLSREG
A, TARGETSBIT
MODESREG
PROGRAM

CALL
CALL
LXI
CALL
HOV
RAL
HOV
JMP

EQU
EQU
EQU
EQU
EQU

7 6

22H ;Blt 6 used to put In target mode.
40H ; Value to write to MOllE
2JH ;Lower four bits used as AO-A}. Inverted.
20H ;Elght bits of data. Inverted.
21H ;Used to control data transfer, as follows:

54} 2 I 0

I L .------ ASSERT DATA BUS when •
----------- READ STROBE when • 1

--------------- WRITE STROBE when· I
these definitions, the read/write functions can use these values:

EQU OIH ;Assert data bus. Write to CONTROL.
EQU 08H ;Assert write strobe. Write to CONTROL.
EQU 04H ;Assert read strobe. Write to CONTROL.

ORG 100H
,
INIT:
; Initialize the 5}80

LXI
XRA
OUT
MVI
OUT
Jfof'

WRITE:
; Writes the data byte In Register
; the address in Register B

HOV A,B
CMA
OUT
HOV
CMA
OUT
MVi
OUT
MVI
OUT
MVI
OUT
XRA
OUT
RET

Equates:

kSREG
TARGETSBIT
ADORESSSREG
DATASREG
CONTROLSREG

BIT

; Based on
ASSERTSBIT
WRITESBiT
READSBIT

LOOP:

DELAY:
; Delays approximately I second.

.....
J
CD

bl
3
"0
c
CD...
C
o
c
3
!!!.-i
c
CD.
Co)...

...
o

(2) The PAMUX bus is designed to be terminated with 180/390
ohm pullup/pulldown terminators. This is too heavy a ter
mination for the S380, so do not use the standard PAMUX
"TERMI" terminator. Instead, use a standard SCSI termination
(220/330 ohms) on at least one end-and preferably both en-
ds-of the SCSI/PAMUX bus. l

(3) All signals on the PAMUX bus are "active high", while all
those of the SCSI bus are "active low". This means that
everything must be inverted, including ADDRESS, DATA, and
CONTROL SIGNALS. Consequently, the normal state of the
SEL and BSY bits would need to be I's, rather than O's, in the
S380's Initiator Command Register. One or the other of those bits
in the S380 is then set to a 0 to generate a READ or WRITE
strobe.

(4) Opto-ll recommends a 2 microsecond minimum duration
for the WRITE strobe, and that you delay for at least 2
microseconds from the setting of the READ strobe prior to
reading input data.

Tbe SCSI/lOP Alternative
It is important to remember that all of the techniques of using

the S380 as a generalized I/O port discussed in this article assume
that the S380 is not going to be used for normal SCSI peripheral
device connection as well. This means that if you plan to use a
SCSI hard disk, tape drive, bubble drive. optical drive, RAM
disk, or any other such SCSI device, you cannot also use the bus
for simple digital I/O or to interface with an I/O bus such as the
Alpha Products A-Bus or the Opto-22 PAMUX bus.

A unique device, available from AMPRO Computers Inc.,
does allow the SCSI bus to be used to add data acquisition and
control devices along with normal SCSI devices. The SCSI/lOP is
a card which acts like a "legal" SCSI target device, and im
plements a STD Bus device interface. A SCSI/lOP can be used
with a single STD Bus I/O card, to add an individual function

such as analog or digital I/O, or the SCSI/lOP can plug directly
into an STD Bus backplane if multiple STD Bus liO cards are
required. The Z80A microprocessor on the SCSI/lOP can also be
used to run tasks autonomously, so the SCSI/lOP can even add
improved real time performance and multi-tasking to an non-real
time, and single-tasking disk operating systems such as PC-DOS
and CP/M.•

References

The following companies were mentioned in this article:

NCR Microelectronics Division
163S Aeroplaza Drive

Colorado Springs, CO 80916
(303) S96-5612
(800) S2S-ll52

OPTO-ll
IS461 Springdale St.

Huntington Beach, CA 92649
(714) 891-5861
(800) 854-8851

ALPHA PRODUcrS CO.
242 West Avenue
Darien, cr 06820

(203) 656-1806

AMPRO COMPUTERS, INC.
1130 Mtn. View Alviso Rd.

Sunnyvale, CA 94089
(408) 734-2800

1···'11

computer Comer

(Continued from page 44)

that runs FORTH directly. The first
production run is the NOVIX 4000 and I
have bought an evaluation board from
Chuck. There are plenty of these devices
available now in several designs, the most
popular are the PC compatible plug-ins.
These boards have 512K of memory, up to
5MHZ operation, cross compilers for
"C", use PCDOS for I/O, while
screaming along at 5MIPS operation.
Now that is 5MIPS at 5MHZ, running
regular stuff, not some special program to
show just how fast it works. If you check
most of the high speed processors of late
you will find most 5MIP units running at
15 to 20MHZ, and doing special register
moves. The Nom can do several
operations at once, but its speed comes
from running FORTH directly.

That statement had me confused for a
while, then I got more information and
figured it all out. The Nom is like all
CPUs in that it takes a bit pattern and
converts that into commands. The dif
ference here is that those bit patterns and

The Computer Journal/Issue '31

the internal architecture directly
correspond to FORTH. Forth is stack
oriented and performs operations based
on stack movements. The Novix makes
use of all those design concepts by using
bit-slice parts and gates. The device only
has about 4000 transistors, while the
68020 and 80386 are into the half million
devices. This unit is also CMOS which
means it uses about 50MA of power (runs
off of flashlight batteries).

If you are interested in NOVIX, I
recommend one of the PC plug in boards,
unless you are a real experimenter.
Chuck's board is a bit high tech and not
of my liking. He uses a European design,
with push sockets and chips on both sides
of the board. There are only II devices in
cluding the oscillator and the Nom. The
board uses 6 static RAMs and 2 ROMs, as
it does everything 16 bits at a time. That
leaves one inverter and driver for the
clock and reset line. The serial is handled
by a resistor in the input line, while the
output works using S volts. The Nom
chip does everything, including bit
banging the serial data at any baud rate,
not bad for Forth.

I am still playing with the unit and will
be getting some more software, and
thinking about using it to drive disk drives
directly. Chuck has a complete system
running using only his board. That is
driving video, reading and writing disk
data, getting keyboard input, as well as
running programs, all by adding only two
or three more chips to the board I
described. I was thinking about using it on
an S-IOO system, but have been giving
more thought to making a PC size unit,
that could talk to PC expansion boards.

Wbat'sNext
My main objective for the near future is

finding a new job, but I haven't let that
stand in my way of hacking. I am busy
porting cheap operating systems to 68Ks
and trying to get more time to work with
Forth or Novix. In any case the number of
projects seems to match or exceed the
amount of time available.. .lets see didn't
Murphy have a law covering that too? •

11

, '~

, ,

''1

1-,'
, J

,j

Compact, Low Power, Cost Effective

Single Board Computers
for Embedded Applications

from $359
Qty1

Little Board™ fPC

World's smallest PC - and CMOS too!
A Motherboard and 4 Expansion cards in the
Space of a Half-Height 5-1/4" Disk Drive!

Stackplane/
PC

High performance
single board
MS-DOS system
8/16 MHz

Multi-function
expansion for
LB/186,I/O,
Serial, RAM,
Math, Clock

Prototype adapter
for 80186 based
projects and
products

Least expensive
single board CP/M
system!

Prototype adapter
for ZSO projects
and products

O_lon • Arven-: Factorial, SA 41-0018\QIIa: Current Solution. (613) 720-3298 • Au.trIa: InternatIonal Computer Application. GMBH 43-' /4545 01.Q' • Brull: Computadores
Compuleader (41) 262-4866. e- Tro-M (604) 438.Q028 • Denmark: Danblt (03) 66 20 20 • I,taly: Microcom (6) 811-9406 • Finland: Symmetroc OY 3584565-322 • France: Egal Plu.
(1)4502-1800. GermMy, W_t IST-Elektronok VertrobesGmbH089-611~151 .lorHl:Alpha Terr",nals, Ltd. (03) 4~16-95. Spain: Hardware & So!tware204-20GG·S_:ABAkta (08154-20-20
•S_ Thau Compute, AG 41 1 74Q-41-OS. UK: Ambar Systems, Ltd. 0296 435511 • USA: Contact Ampro Computers Inc

Communicating 'with Floppy Disks
Disk Parameters and Their Variations

by E. Stiltner, Skunk Creek Computing Services

i ..~

, ..

Floppy disks have become a nearly
universal medium of permanent data
storage for microcomputers. To a smaller
extent, they have become a medium of
data interchange between microcom
puters. But, with the exception of the
"standard" SSSD 8 inch format, and
some "universal" disk read programs, we
are still living in a world where Brand A
computer reads only Brand A diskettes,
Brand B computer reads only Brand B
diskettes, ditto for Brand C, and so on.

We have seen how the data from the
computer is converted to a bit stream and
stored on the diskette along with a very
sophisticated set of control information in
Floppy Disk Track Structure by Dr. Ed
win Thall, in TCl #29. Now, let's take a
detailed look at the subject of floppy disks
in terms of all the dimensions of actually
recording the data.

The following parameters uniquely
characterize the recording of computer
data on a floppy disk:

Physical diskette size
Transmission rate
Encoding mode
Data true or inverted
Tracks density
Number of tracks per side
Number of sectors per track
Sector numbering
Physical data sector size
Number of sides
Sector skew

Pbysical diskette size
Floppy disks come in three physical

sizes-8 inch, 5 V. inch, and 3 Vz inch. Sin
ce the 3 Vz inch diskettes are really 90 mm,
they will be so referred for the rest of this
article.

Transmission Rate
Date are transferred between a floppy

disk drive and the computer at either of
two transmission rates, 250 Khz or 500
Khz bits per second. All 8 inch drives use
the 500 Khz rate. When the 51;4 inch
drives first came along, a slower tran
smission rate of 250 Khz was used. Recent
51;4 inch drives support both transmission
rates. The low rate was likewise adopted
for the first generation of 90 mm disk
drives. But recently introduced 90 mm
drives support both low and high tran
smission rates.

The Computer Journal/Issue 1131

Encoding Mode
There are two modes of encoding the

data-I.e., transforming 8-bit bytes into a
serial bit stream for the track image
Frequency Modulation (FM), and
Modified Frequency Modulation (MFM).
FM mode (sometimes called "low den
sity") records two pulses per data bit, a
clock pulse at the beginning of the data
cell and pulse (or lack thereoO at the cen
ter of the data cell for the data. MFM
mode (also called "high density") uses a
self-clocking technique whereby a pulse
appears at the center of the bit cell for a
one, or at the beginning of the bit cell for
a zero; a technique that effectively
doubles the amount of data that is stored
in a given space.

Data True or Inverted
In the world of electronic data, a datum

can be represented in two forms-true or
inverted. For example, a recording of the
bit pattern 01100101 is just that. Or data
can be represented in inverted form,
where the above bit pattern is recorded as
10011010. Most floppy disk recording is in
true mode. But there are diskettes with the
data recorded in inverted form.

Track Density
The track density, i.e., the separation

between the consecutive circles that make
up the image of recorded data, has been
very much a function of technology. The
8 inch drives recorded at 48 tracks per in
ch (tpi) or 1.9 tracks per millimeter. An 8
inch drive is an 8 inch drive and we don't
worry about track density per se. It is of
interest to note that the total width of the
recording surface on the diskette is 40 mm
wide.

But things changed with the 51;4 inch
drives. The early 5 1;4 inch drives recorded
the track images at the same 48 tpi but
used a narrower recording surface width
of 21 mm, which accounted for the small
capacity of those units. The next technical
development was 5114 inch drives that
record data at 96 tpi or 3.8 tracks per
millimeter, effectively doubling the
capacity. But this introduced another level
of confusion for the computer user-now
we are talking about "quad density."
And the programmers talk about "double
tracking" the 96 tpi drives to handle the
48 tpi diskettes which is why we need to be

concerned with this parameter.
The next hardware generation was the

90 mm drives. These drives pack the track
images at 130 tpi or 5.1 tracks per
millimeter. The recording area on these
diskettes is 15.6 mm wide.

Number of Tracks Per Side
How many tracks of data that are

recorded on one side of a diskette depen
ded on the technology. The 8 inch drive
designers found that 77 tracks in a recor
ding width of 40 mm was a reliable
maximum.

With the 5V. inch diskettes, the 48 tpi
units recorded a total of 40 tracks in a
recording width of 21 mm. The 96 tpi
units record in the same width, so they
have a total of 80 tracks per side.

The 90 mm drives provide the same
characteristics as the 5 V. inch drives, a
total of 80 tracks per side, but in a recor
ding width of 15.6 mm.

Note that track numbers as seen by the
computer range from 0 ... N-I; so for an
80 track diskette, track numbers O...79
are available.

Sector Numbering
Tracks are assigned numbers ranging

from O... N - I. This has been' 'built into
the silicon." But sector numbers are
another matter. Sector numbers are
defined during the formatting of the
diskette and can be any value supported
by the hardware. In practice, most data
are recorded with the sector numbers
ranging from 1... N. But there are excep
tions; some computer systems use a
O... N - I sector numbering assignment.

Physical nata Sector Size
Computer data are recorded on a

diskette in standard length sequences
called sectors. At present, sector lengths
of 128, 256, 512, 1024 and sometimes 4096
bytes are supported. Note that the length
of the physical sector size does not
necessarily match the system or logical
sector size. For example, the old CP1M
system used a system sector size of 128
bytes, but various physical sector sizes
(called "blocking") have been used by
different manufacturers.

Keep in mind that the "real physical
sector" image consists of the computer
data surrounded by the control infor
mation described in Dr. Thall's paper.

13

, 1

, "

Floppy Diskette Capacity

~ ~ ~ ~

128 byte sectors :
Sectors per track16 26 26 48

256 byte sector s:
Sectors per track9 16 15 26

512 byte sectors:
Sectors per track5 9 8 15

1024 byte sectors:
Sectors per track2 5 4 8

Table 2:

Bytes per track
Bytes per track

Skew is also termed Interlace or Sector
Translate.

Typical skew values range from 2 to 6.

Software Skew Venus Hardware Skew
The following are some considerations

to apply in deciding between hardware
and software skew

With hardware skew, the physical sec
tor numbers are true; if the mapping
algorithm says sector N, then sector N is
the one to read. Memory space is not
needed for the skew table to translate
between logical and physical numbers.
Diskettes with different hardware skew
factors can be used without any system
changes.

With software skew, the physical sector
numbers are not true; the specific physical
to logical mapping for that diskette is
needed to read the data on another
system. Memory space is needed for the
skew table to map the logical system sec-

High rate
5210

10420

Sectors per Track

Low Rate
3125
6250

.h2!.~: .!:!J..q!!.~:

f!!. ~ FM ~

128 byte sectors:
8ytes per s Ide160k 260k 260k 480k

256 byte sector s:
Bytes per sidelBOk J20k)OOk 520k

512 byte sectors:
Bytes per s I de200k J60k J20k 600k

1024 byte sectors:
Bytes per s I del60k 400k J20k 640k

("k" • 1024)

Table 1:

Figure I

Mode
FM:

MFM:

the sector ID field in the sector images is
offset by the skew factor. For example,
given a skew factor of 4, the first physical
sector is number I, the fifth physical sec
tor is number 2, the ninth physical sector
is number 3, and so on.

For software skew, the diskette is for
matted with a hardware skew of one and
the system uses a conversion table to map
logical to physical sectors.

The goal is to have the next sector with
the desired data come under the read head
about the same time the system is ready to
access it. A lot of effort goes into deciding
just what is the optimum skew factor.
And it can depend on the application; a
high-level language can have a lot of
overhead between successive sector reads
and thus diskettes for that application
need a large skew. Whereas a tight
program in assembly language may get
back to read its next sector fast enough to
support a small skew factor.

Number of Seeton Per Track
The total number of bytes (this includes

the control information overhead) that
can be recorded on a track depends on the
encoding mode and transmission ratt.
Figure I gives the typical number of bytes
that can be stored on a track.

Given the total amount of data storage
available on the track, the physical sector
size, and the overhead for control infor
mation, we can calculate how many sec
tors of computer data can be stored on a
track.

Table I presents typical sectors per
track, based on 80 tracks per side and
typical control information.

Number of Sides
The early disk drives supported recor

ding data only on one side. Most state-of
the-art drives support both single or
double sided recording. It is another
datum to keep track of.

But there is a wrinkle to recording on
the second side of the diskette that we
must consider. What algorithm do we use
for mapping the second side? We could do
any of the following:

I) Extend the track number; e.g., the
track numbers on the second side, as far
as the operating system is concerned,
rangefrom 80 ... 159.

2) Or we could extend the sector num
bers for a track; e.g., the sector numbers
on the second side, as far as the operating
system is concerned. extend from the
numbers on the first side. For example if
there are 48 sectors per track, the sectors
on the second side would be 49 ... 96.

3) Or we could alternate-even track
numbers on the first side, and odd track
numbers on the second side.

In practice, all three schemes have been
used by various manufacturers, so we
have to keep track of which algorithm was
used.

Sector Skew
Now we look at an efficiency con

sideration. Consider the physical situation
upon reading data from the diskette: The
computer system calculates the address of
just what sector to read and issues the
commands to read it. That sector is read.
While the system or application program
is digesting that sector, the diskette is still
rotating. If the next sector to be read has
just gone past the read head by the time
the system issues the read for that sector,
the computer has to wait for the diskette
to rotate all the way around for the
desired sector to come under the read
head.

This problem is addressed by offsetting
the sector numbers, either in the track
image (hardware skew) or via the
operating system (software skew).

For physical skew, the sector number in

14 The Computer Journal/Issue '31

Appendix I

Physical size:
3) 3 1/2 Inch (90 ""')

or
5) 5 1/4 Inch

or
B) B Inch _

TranSlalsslon rate:
L) Low. 250 Klloblts/sec with IoFM

or
H) High, 500 Klloblts/sec with '*"M _

Encod I ng lIOOe:
F) FM. Frequency Modulation

or
M) MFM. Mod I fled Frequency Modu I at Ion _

Date: I I

Floppy Diskette Par_te,..

Cqoputer:, _

Sector numbering:
A) 0 ••• PH

or
B) 1 ••• N _

Number of s I des:
1) 1 side

or
2) 2 sldes _

Doub Ie sided IIllIpP Ing:
A) Extend Sectors

or
B) Extend Tr<>Cks

or
C) Alternate Sldes _

HIIrdware skew:
1 N • _

Software skew:
1 N _

'.

Appendix II

There Is a lot of changing back and forth betw....n Engl ish and
_trlc units in this area. The foll"",lng table gl ves
_asur_nts that have been used in this paper In both systems.

Data true or Inverted:
Tl Data true

or
I) Data Inverted ". _

Track density:
A) 48 traCksllnch (8 Inch drives)

or
B) 4B tracks/Inch (5 1/4 Inch drives)

or
C) 96 tracksllnch (5 1/4 Inch drives)

or
D) 130 tracks/Inch (3 112 Inch drlves) _

Number of tracks per side:
A) 77 tracks (B Inch drives)

or
B) 40 tracks (5 1/4 Inch drives)

or
C) SO tracks (5 1/4 Inch and 3 112 Inch drlves) _

Physical sector size:
1) 128 bytes per sector

or
2 J 256 bytes per sector

or
3) 512 bytes per sector

or
4) 1024 bytes per sector _

NUOlber of physical sectors per traCk:
5 52 _

Disk size:
B InChes
5 1/4 Inches
3 1/2 Inches

TraCk density:
4B tracks per Inch
96 traCks per Inch

130 tracks per Inch

Recording surface width:
1.6 Inches
0.B3 Inches
0.62 Inches

203 .1111_ters
D3 .1111_ters

90 ..llll_ters

1.9 tracks per .1111lll8ter
3.B tracks per .1111_ter
5.1 tracks per ..1111_ter

40 .1111_ters
21 .1111_ters
15.6 .1 II I_ters

, .. j!

''il

tor to the physical sector. An advantage
of software skew is that the formatting
program can be simpler and does not need
to be changed for different skew factors.

Needless to say, one should not mix
hardware and software skews. That is, if
the hardware skew is not one, then a sof
tware skew of one is expected and vice
versa.

Putting It Together
Now that we have seen the relationships

between the various parameters of recor
ding data on floppy disks, we can
calculate typical disk capacity. Table 2

gives a total disk capacity for a mythical
8O-track diskette as a function of the
major parameters of transmission rate,
encoding mode, and sector size.

We have seen the nearly one dozen
parameters that specify how computer
data are recorded on floppy disks. Given
reasonable permutations in each
parameter, we get some 12,000 possible
variations in the way data are recorded! Is
it any wonder we have to contend with a
few incompatibilities? Or perhaps we
really should ask how many possible for
mats have NOT been used.

In hopes of rrnmmlZlng further elec
tronic misunderstandings, the log sheet in
Appendix I is recommended to uniquely
document just how the data on a par
ticular diskette has been recorded.

In closing, note that each computer
system overlays this elaborate structure
with another layer of organization to sup
port the system image, fIle directories,
various state tables, and the actual fIle
data. But that is another very long story
and unique to just about each computer
system.•

, ..

,""

, "

TCJ Is User Supported

If You Don't Contribute Anything....

....Then Don't Expect Anything

'1

The Computer Journal/Issue '31 15

XBOIS
A Replacement 810S for the S8180

by Richard Jacobson

Xsystems Software's XBIOS is a replacement BIOS for
Micromint's SB180 and SBI80FX single-board computers which
are based on the Hitachi HD64180 CPU. When the SB180 was
first announced two years ago, the 8-bit world greeted the new
system with enthusiasm and many people were convinced that
Micromint's new computer represented the salvation of the 8-bit
community. While the implementation of the 64180 by Micromint
was quite decent on the operating system level, there were a num
ber of irritations that plagued users, particularly those who had
implemented hard drive systems using the COMMI80 SCSI board
and its associated BIOS. These irritations included slow disk 110
and, more significantly for many, extremely low TPA (many hard
drive systems were running with TPA's less than the Digital
Research standard of 48k.) Users with little technical software
background were daunted by the perceived complexity of
modifying the Micromint system. With the availability of XBIOS,
such irritations are now a thing of the past.

XBIOS offers a dramatic improvement over the standard
Micromint operating system in the critical areas of performance,
configurability, and TPA. It will run on any configuration of the
SB180 (with or without the Micromint SCSI interface) or the
SB180FX and includes support for the ETSI80I0 + add-on
board, with which it is bundled.

A simple list of the features of XBIOS, though impressive,
cannot do justice to the experience of using it, particularly for
users who have grown accustomed to the limitations of the stan
dard Micromint system.

By putting the BIOS in abank of memory separate from the
user's, XBlOS provides 3k to 5k more TPA than Micromint's
system. The original, standard-issue operating system, while fun
ctional, has such stringent TPA limitations, particularly on hard
disk systems, that many SB180's simply could not reasonably
handle TPA-hungry programs such as WordStar Release 41!> . In
contrast, with XBIOS installed, a 20 meg hard drive system with
all ZCPR3 segments except lOP, weighs in at an impressive 54k in
the TPA department (the measurement includes the standard 2k
for the CCP). An XBIOS-based SBI80 will support full-featured
WordStar Release 4 with ease~and with room to spare.

Not only does XBlOS offer significant improvements in TPA
for all configurations of the SB180, but it also implements RSX
type programs, called banked system extensions (BSX's), which
further extend functionality, without reducing TPA, by tucking
useful programs into the alternate memory bank. DateStamper,
by Plu·Perfect Systems, is supplied as a BSX. Other BSX's sup
port CP/M 3.0-stYle date calls, using BDOS function 105. Users
can anticipate a proliferation of BSX's as time goes by and as
XBIOS users start implementing BSX's, limited only by their
needs. For example, an HP-style calculator has already been im
plemented as a BSX. Numerous additional BSX's are planned by
Xsystems Software, each modular BSX supporting various
specialized hardware and software applications. The BSX system
extensions can be loaded into and removed from the alternate
bank of memory on the fly and are powerful enhancements to
system flexibility. In short, a BSX offers all the advantages of a
memory resident program without requiring the sacrifice of
precious TPA or a needed ZCPR3 system segment. (Many useful

18

programs are implemented as ZCPR3 RCP's but require the user
to overwrite the standard "utility" RCP and therefore entail an
overall loss of functionality as well as the expenditure of CPU
time in loading different packages.) Concepts such as BSX's
reveal the depth of systems-level thinking that has gone into
XBIOS.
The execution of XBIOS reflects its author's fanatic attention to
detail. The XBIOS package includes an integrated system
clock/calendar to support time and date functions. It also in
cludes a utility that allows any port to be used for CP/M 110
devices (LST:, RDR:, PUN:), and allows on-the-fly I/O redirec
tion. XBIOS permits the console to be assigned to any port. The
package supports full Xon/Xoff handshaking, as well as DTR for
ETS I8010 + ports. XBIOS supports multiple controller and hard
drives, using the standard SCSI interface. One of the hallmarks of
XBIOS is flexibility-in actual use as well as in overall system
configuration.

The flexibility of system configuration is in keeping with the
emphasis of XBIOS on functionality. Each of the 16 logical drives
can be assigned to any type-RAM disk, hard drive, or floppy.
The XBIOS system treats the SB180's RAM disk as a single drive,
with contiguous space, even on the FX version of the board. Even
so, the user can partition the RAM disk into multiple logical
drives. Furthermore, the "A" drive can be assigned to any device
(no more need for system tracks), and the RAM disk can be
assigned to any logical drive, not just "M", another limitation of
the Micromint system. All of this flexibility can be taken advan
tage of by the average user. The installation of XBlOS does not
require any knowledge of assembly language programming.

A powerful, menu-driven configuration utility makes in
stallation a snap, allowing the user to define all system
parameters, including the assignment of different physical
parameters to each floppy disk drive, the assignment of each
logical drive ("A" through "P"), and the sizing of Z-System buf
fers, as well as the choice of certain Z-System parameters.

The package includes full utility support: a floppy and hard
drive formatter, a set-and-display-time utility, a program to
reassign I/O devices, and a utility to initialize the RAM disk. All
this comes with a beautifully printed and exhaustively detailed
manual.

The ease of setup-as well as the extensive and thorough
documentation-does not mean the user is prevented from getting
into trouble. Power and flexibility always come at a price. This is
not meant as a criticism of XBlOS package-it is as nearly perfect
a piece of software as I have experienced and alone justifies pur
chase of the SB180 computer.
. As an example of what can happen when you fail to pay ap

propriate attention to the option settings, or simply forget about
what you have done entirelY, I have a cautionary tale. About two
weeks ago I added a 96 TPI drive to my SB180 system, configured
XBIOS for three floppies instead of two, checked everything out,
flipped the switch, and waited to enjoy the fruits of my labors.
Nothing! The system would not boot. All the terminal showed
was a partial sign-on message and then-out to lunch. Nothing
worked. Finally, after horrible gyrations, I figured out the new
system would not boot because it needed to be set for one

The Computer Journal/Issue 1f31

memory wait state. Before the addition of the third floppy, and
thanks to the flexibility of XBIOS, I had been running at zero
memory wait states-a distinct speed advantage over the standard
one-wait-state Micromint system. (The 5BISO hardware always
has one op-code wait state and the standard software adds
another memory wait state. Taking out the standard single
memory wait state under XBIOS gives about a 20070 increase in
speed and makes the 6mhz 5BISO almost as fast as the 9mhz ver
sion.) Apparently, the slight increase in power draw caused by the
added floppy drive was the straw that broke the camel's back.
Sure enough, when I configured XBIOS for one memory wait
state the system booted like a charm. As I said, power comes at a
price.

The price is no price at all when it comes to XBIOS. The in
crease in TPA alone makes the package a bargain. The operating
system addresses, ZCPR3.3 system segments, and ZCPR3.3 buf
fers on my XBIOS fueled SB180 prove my point and are shown
below:

ZCPR3 Element Base Address
------------- ------------

CCP 0000 H
8005 0806 H
BIOS E600 H

Env Descriptor FEOO H

Pack: FCP FAOO H
lOP 0000 H
RCP F200 H

But: Cmd Line FFOO H
Ext FCB FOOO H
Ext Path FDF4 H
Ext Stk FFDO H
Messages FDaO H
Named Olr FCOO H
Shell Stk FooO H
Wheel Byte FDFF H

This setup lacks only an lOP, which I do not take frequent
enough advantage of to warrant the TPA loss. The bottom line is
that the memory map above buys me a 54k TPA, with a full-up Z
System except lOP, and that's good for any piece of hardware.

Two years ago, the author of XBIOS, Malcom Kemp, pur
chased the SB18O, which had just been announced in Byte
magazine. (previously, he had owned a Morrow floppy-based
system.) Kemp loved Echelon's Z-System, but was frustrated by
the relative lack of TPA on the SBlSO, as well as the slow disk
I/O. That frustration was the beginning of XBIOS.

Kemp decided to put a portion of the BIOS into an alternate
bank of memory. (The Hitachi 64180 chip has memory
management that allows logical remapping of where the 64k ad
dressable bytes exist in physical memory, permitting control over
a total of 256k of memory on the chip. The FX version of the
SB180 uses an enhanced MMU, allowing control over more
memory.) At first, Kemp put only the disk I/O routines and the
disk buffers in the alternate bank. The current release of XBIOS
has the entire BIOS in the alternate bank (carved out of the
SBI8O's RAM disk-so beware of a small reduction in RAM disk
size) except for a small transfer vector, a short front end to the in
terrupt handlers, a routine to save machine state, and disk tables
along with their associated buffers.

During his initial work on XBIOS, Kemp exchanged ideas with
Jay Sage, Bridger Mitchell, Bruce Morgen, Ken Taschner, and
others. The BSX concept, as well as others, grew out of Kemp's
creativity and his interaction with these systems programmers. At
all times, however, Kemp's main effort has been to maximize the
configurability of the SBI8O. As Kemp says, "Whatever the har
dware could support, 1 wanted to support with software." The

The Computer Journal/Issue '31

I/O redirection capabilities of XBIOS grew out of this concept.
Not only does XBIOS support the hardware capabilities of the

SBI8O, but it also supports the greater functionality of the
ETS18010+ board, by Electronic Technical Services, with its ad
ditional serial ports. The ETSlS010 + board, carried by all
XBIOS distributors, is a vast improvement over the standard
SBlS0 hardware I/O facilities. The board is an all CMOS design,
offering two additional high-speed (115.2 kbps) serial ports with
CPU independent baud rates and full hardware handshaking. It
includes 24 bits of user configurable parallel I/O. In addition,
there is full buffering of the expansion bus for other add-on
boards, as well as comprehensive interrupt support. The
SASI/SCSI interface is fully DMA capable and, when combined
with XBIOS, supports all popular SCSI-compatible hard disk
controllers and drives. The battery-backed, real-time clock, along
with OateStamper time and date stamping of disk flIes, is a real
improvement over standard kludges. The real-time clock is ac
curate to 10 ppm, supporting month, day, year, day-of-week,
hours, minutes, and seconds. It uses standard BR2325 lithium
batteries for a back-up power source. The ETS18010 + board is
7.70 inches long by 4.12 inches wide. The power required is 300
MW typical, 500 MW maximum, and excludes SCSI. Both RS232
ports are factory configured as DCE, but each may be indepen
dently jumpered to OTE.

Needless to say, while XBIOS functions happily without the
ETS18010+ board, the addition of that board provides a
significant increase in power and flexibility to any SBlSe-based
system.

Malcom Kemp plans a Release 2.0 of XBIOS. He hopes to con
centrate on speeding up both disk and character I/O (perfectly
fine in Release 1.0, but Kemp is never satisfied). There was an
early Release O.S, which did not support the FX board, but which
did have slightly faster disk and character I/O than the current
release. XBIOS now fully supports all SBI8O's, in all con
figurations.

Criticisms? Nothing is perfect and XBIOS has some features
currently missing or some areas where improvement is possible.
While this is not really a problem, character 1/0 is slower than on
the standard Micromint system. Also, Uniform will not run under
XBIOS. Both of these criticisms will be answered in future
XBIOS developments. Malcom Kemp is committed to making the
finest operating system available for the SB180 even finer.

XBIOS is available from the following sources: (1) Lillipute Z
Node, 1709 N. North Park Avenue, Chicago, IL 60614,
Modem:312-649-1730, 312-664-1730, Voice:312-280-1621; (2)
Sage Microsystems East, 1435 Centre Street, Newton, MA 02159,
Modem:617-965-7259, Voice:617-96S-3SS2; and (3) NAOG/Z
SIG, P.O. Box 2871, Warminster, PA 18974, Voice:21S-443
9031. The price is S7S plus S & H. All of these vendors carry the
ETS18010 + board as well.•

17

f •

, .'l

i ~

,,j

"

'"

K-OS ONE and the SAGE,

Demystifing Operating Systems

by Bill Kibler

The people at Hawthorne Technology
have put together an inexpensive, but ef
ficient operating system for 68000 com
puters, K-OS ONE(!) . The original design
concept was for an inexpensive system, in
which all the code was provided, so that
hackers could still do something on their
own. We find that most systems today
have become so complex that it is im
possible, in many cases, to get to the har
dware directly. These companies in fact
have gone out of their way to make sure
that the user can not change or modify
their system in any way. Now that is fine if
all you want to do is run commercial
packages of software.

If your desires run to making a system
to protect your home, or to talk to people
when you are not around, a non standard
design might be more to your liking. If
you are just starting to get into hardware
design and want to run special programs
to test out that design, multi-layers of
operating system are not what you want.
All these design considerations require the
operating system to be simple and straight
forward. The installation should be easy
and provide for many options or levels of
development.

All of these design considerations were
behind the development of the K-OS ONE
operating system. We felt that the 68K
was superior to the more common CPUs
in use today, but the lack of an inexpen
sive operating system was preventing
people from discovering its features. Like
any project, this one has some learning
and work attached to it. Most people find
operating systems a mystical concept, and
feel that writing operating system
programs is beyond their capbilities. What
I hope to do here is demystify the topic,
especially the installation of K-OS ONE.

Getting Started
The major stumbling block for most

people is just deciding where to start. It
took me several days of looking at various
things before 1 could chose a direction to
go. The first thing needed is a computer
system. If the system is already running so

18

much the better. If the system is not run
ning, special problems must be handled
first. What I am going to cover here is
bringing up K-OS on a Sage/Stride com
puter. At a later time I will expand on get
ting a system up from scratch for the first
time. What we are interested in here now
is what steps are needed and what you will
need to learn to get the job done.

The first place to start is learning about
your current system. The Sage is a 68K
based unit, mine is five years old. The unit
came with all the books and software in
cluding source code for all the current
PROMS AND BlOSs. Without the source
code it is almost impossible to bring up
older systems. It is possible with just
schematics to figure out how everything
talks to each other, but looking at all the
older programs, will make some of the
items quickly clear. I printed out all the
Sage source code, about two inches wor
th, which is what most complex system
will be-very long.

To help us understand how to start, we
need to review how, and what steps, occur
in getting the operating system running.
The hardware on reset goes to a PROM
which must contain a program to start the
system. This is called a BOOT program.
The boot program will initialize the
system enough to start some form of
operation. The better systems also contain
a DEBUGGER or MONITOR, should
some problem or special action be needed
to bring it up. In the Sage, the PROM
reads some switches on the back and
determines which actions to take. Nor
mally it will test memory, then boot the
system. Options are to not test memory,
and go to debugger. In the debugger, a
simple command will start the system, or
you can disassemble the memory.

After the reset, we have a number of
functions that must be performed, such as
initializing the I/O devices. The initial set
ting of the baud rate for your serial ter
minal is taken from the switch setting in
the Sage. The parallel devices also need to
know which lines are to be input and
which to be output. The disk drives

should be reset to track zero and maybe
even checked as to what type they are.
These are the typical actions that occur af
ter reset. If you enter into the debugger, at
this point you can explore your system or
do a "IF" in the Sage which starts the
booting action from a floppy drive. At
that point this system goes and does its
boot action which means loading a
BOOTSTRAP program at a fixed
location and jumping to it.

Each operating system will have its own
disk format and number of files which
must be loaded in order to bring up the
system. Most operating systems are
broken into three parts; BIOS, BOOS,
and COMMAND. The BIOS stands for
Basic Input Output System, and does all
the talking to the hardware directly. The
BOOS is your Basic Disk Operating
System and provides a uniform means of
having programs talk to different forms
of hardware. The programs will make
calls to the BOOS and it will convert them
into the required number of commands
needed to achieve the task requested.
Typically you may have a terminal and a
printer installed. By sending the proper
command you can ECHO all output to
your terminal to the printer. The BDOS
handle~ the echo-ing while the BIOS ac
tually makes separate outputs to the ter
minal and the printer, each being a dif
ferent routine in the BIOS.

The COMMAND processor takes
keyboard input and interprets it into a
number of predefined operations, such as
displaying a directory of the disk. To
display that directory it must request the
BOOS to read the disk for the directory
information, format that information and
then send it to the terminal port through
the BIOS via the BOOS. When running
programs, it is typical to replace the com
mand processor with your program, and
then reload the command processor after
your program ends. That operation is
called warm booting.

In the K-OS those programs are
SYSTEM.BIO for the BIOS,
OPERATE.BIN for the BOOS, and

The Computer Journal/Issue 1/31

KOSONE BOOTLDADER ROUTINE - PC C(M>ATlBLE

Boot LOlder Lilting

:
:------------------------------- LOAD BIOS

The progra. loads ONLY the FIRST FAT and FIRST OIR
sector, to save space. This -eans that the SYSTEM.BID
or BIOS fIle -ust be loaded wIthIn the fIrst 15 fllesl
The BI OS code Is loaded at AOOh, space be~n 400h
and AOOh can be used after BIOS Is COIIPletely loaded.

, .;ll

III

1'''1

,.

, '~

; go debugger I f error

; load f Jrst OIR sector
;OIR load location
:ALSO LOAD OIRPOINT£R
:PUSH location on stack
lone sector load
: PUSH sector length
:PUSH drive nullber
; go read sector

:flag to booting Is going on

BOOT VAR,A3 :setup pointer
ISYsNAM,FIWof'NtA3I : load string pointer
1810S CODE,LOADPNtA3) :LOAD BIOS AOORS
FIf()fliL
ABORT ; go debugger
MSGI,AD
TERMTEXT
TERICRLF
LOADFIL
ABORT

TERK:RLF
INITMSG,AO
TERMTEXT
TERMCRLF

LEA
J«)VE.L
J«)VE.L
BSR
BNE.S
LEA
JSR
JSR
BSR
BNE.S

J«)VE.W 15,-(A71
LEA BOOT OIR,AD
J«)VE.L AO,oliRPNtA3I
J«)VE.L AO,-tA71
J«)VEA.W 1512,AO
J«)VE.L AO,-(A71
J«)VE.W DRIVEtA3I,-tA71
JSR FtlREAO

BNE.S ABORT

JSR
LEA
JSR
JSR

The PC disk forllllt Is COIIPatlble as far lIS sector and
track utilization. The PC uses only the fIrst sector for
boot loader with the FATs starting at sector two. PCs use
Clusters of two sectors to a block while the Sage Is
one sector per block for the floppy disks. This will
require doubling of the cluster n~ and sublng one
to get the proper sector nullber for pass Ing to the
Sage FtlREAO routines.

Boot loader routine for the Sage/Stride COIIPuter,
written Sept 1987 by BII I Kibler some portions
supplied fro- HTPL sample BIOS: BIOSAMPL.ASM.

The Sage COIIPuter loads sector 1 and 2 when given
a boot e:e-and "IF". Each sector Is 512 bytes long.
The first four bytes of the boot sector -ust contain
the word "BOOT" or the boot loader In the PR<»4 will
error out. The code Is loaded at O4OOhex and the progr_
wI II jUlllp to ~04h after checkIng for "BOOT". Also the
sectors 1 and 2 are logical blocks, 0 and 1 tIl. The
Sage PR<»4 reads sectors by logical block nullbers not
track, s I de, and sector.

TITLE "SAGE BOOT.ASM PC C(M>ATIBLE BOOTSTRAP LOADER"
...................... ORIGINS .
BOOT EQU ~H

BOOT COOE EQU 00000400H :BOOTER LOCATION
BOOrVAR EQU 000005EOH :~TQ1 AAE.A
BOOTFAT EQU 00000600H :FAT READ WITH BOOT
BOOrOIR EQU 00000800H :OIR 1 LOCATION
BIOSCooE EQU OOOOOAOOH :BIOS COOE
TERM'I'txT EQU OOFEOOI8H ;PRINTOUT TEXT STRING
TERICRLF EQU OOFEOO1Q1 ;PRINTOUT CRLf
FOREAD EQU OOFEOO28H :READ FLll"PY 0 ISKEnE
TOTRACX EQU 40 ; TRACXS PER 0 I SK
TOTSECT EQU 9 ; SECTORS PER 0 I SK
TOTSIOE EQU 2 ;SIDES PER DISK
DEBUG EQU OOFEOOIOH :DEBUG ENTRY
................ SYSTEM INITIALIZATION .

ORG BOOT_COOE

DC.B "BOOT": Sage checks for th I s stat_nt

PR<»4 starts progrllll here•••

LEA BOOT VAR.A3
J«)VE.L tA7i+,RTNADOtA31
J«)VE.W tA71+,DRIVEtA31

Bootstrapplnl
We that said after reset the system can

automatically boot from disk or you can
do this manually. In either case the Sage
process is the same. two sectors are loaded
from disk into memory location 400hex
and then the system jumps to it. This is
typical of all boot operations, what is dif
ferent is the number of sectors, location,
and a special Sage signature. It is at this
point that we now get out our books and
determine the format of our disk. The
IBM PC line of disks use a 40 track for
mat of 512 bytes per sector and are 9 see
tors per track. The PC can read, and did
use, other formats, but this is now the
most common format. The next bit of in
formation we need is the location of the
directory information. The directory, or
the information that tells you where the
files are stored, is contained in two see
tions, FATs and directory entries. The
PCDOS system is based on the original
CP1M operating system which, only had
32 bytes set aside for each entry in the
directory. In CP/M, the sectors that a me
used were placed with the me name,
which limited it to a 16K me size before
another directory entry was needed.

The PC designers wanted to add date
and time, as well as to allow larger fIles, so
their answer was using File Allocation
Tables or FATs. These tables tell the
operating system which sectors were used,
based on a starting pointer contained in
the directory entry. Typically the FATs
are sectors 2 through 5 with the directory
entries being sectors 6 through 12. With
each side containing only 9 sectors, direc
tory entries 10, II, and 12 are on side I
(the sides are 0 and 1). The bootstrap PC
loader is on sector 1 only and contains
data other than the bootstrap. The book I
used for most of the PC information is
Peter Norton's Programmer's Guide to
the IBM PC, and I can recommend it for
more details.

You need to know this information,
because K-OS uses the PC disk format.
Without this compatibility the porting
over of the system would be considerably
more complex and time consuming. All
things are not totally simple however, as
the Sage is not PC compatible. What we

COMMAND. BIN for the command
processor. In the 68000 the components
can talk to each other by using regular
jump tables and interrupt, or trap vectors.
K-OS uses both tables and vectors. To
bring the system up you will need to set
values for both items, but then we are get
ting ahead of ourselves a bit here.

The Computer Journal/Issue '31 18

.; •••••••••••••••• COULD NOT LOAD SYSTEM .

,
; •••••••••••••••• SET UP DONE. START A PROGRAM .

JMP BIOS_CODE ;START BIOS

;PUSH location on stack
,one sector load
,PUSH sector length
;PUSH drive number

;EXIT TO DEBUGGER

, IF 000 I RECORD I THEN

; RECORD-eLKTOREC I NEXTBLKI RECTOBLKI RE~111

;ELSE RECORD • RE~ +1

1512.LOADPNIAJI ,ADVANCE POINTER
NEXTREC ,CALC NEXT RECORD NlJIoeER USING FAT
11.RECCNTlA31
LOAD20 ,ENOFOR

MSG2.AO
TERMTEXT
TERMCRLF
DEBUG

12.00
11,00
112.00

112.00
11,00
12,00

MOVE.W SECTORIAJI,-IA71 ,PUSH sector number
MOVEA.L LOAOPNIAJI,AO
MOVE.L AO.-IA71
MOVEA.W 1512.AO
MOVE.L AO.-IA7l
MOVE.W ORIVEIAJI.-IA71
JSR FOREAD

ADOI.L
BSR
SUBQ.L
BNE.S
RTS

ABORT LEA
JSR
JSR
JMP
RTS

;------------------------------- CALC NEXT RECORD USING FAT
NEXTREC MOVE.L RECOROIA3I,OO

BTST.L 10.00
BEQ.S NXRC10
BSR RECTC6LK
BSR NEXTBLK
BSR BLKTOREC
BRA.S NXRC20

NXRC10 ADOQ.L 11,00
NXRC20 MOVE.L OO,RECOROIA31

RTS
;------------------------------- CONVERT RECORD NUMBER TO FAT INDEX
RECTOOLK

SUBI.L
LSR.L
ADOQ.L
RTS

;------------------------------- CONVERT FAT INDEX TO RECORD NUMBER
BLKTOREC

SUBQ.L
LSL.L
AOOI.L
RTS

;------------------------------- GET NEXT BLOCX IN FAT CHAIN
NEXTBLK MOVE.L 00,01

ADO.L 01.00 ;TABLEPOINTERsBLOCX·J/2+FATBUF
ADO.L 01,00
LSR.L 11,00
LEA BOOT FAT,AO
ADOA.L OO,AO
BSR LOINTELWORO
BTST.L 10,01 ;IF PREVIOUS WAS 000
BEQ.S NX8Ll0
LSR.L· 14.00 ;THEN SHIFT OUT LOW NIBBLE
RTS

;
••••••••••••••••••••• SYSTEM LOAD ROUTINES .

;------------------------------- FINO FILENAME IN DIRECTORY
FINOFIL

MOVEQ 115.00
FIN020 MOVEQ 110.01

MOVEA.L OIRPNIAJI,AO
MOVEA.L FNAMPNIA3I,Al

FINOJO CMPM.B IAOI+,IAll+ ;CCM>ARE OIR ENTRY TO FILE NAME
DBNE 01,FINOJO
BNE.S FIND40
RTS ;RETURN TRUE IF EQUAL

FlN040 ADOI.L IJ2.0IRPNIAJI
OBRA DO,FlN020 ;ENOFOR
MOVEQ 11.00
RTS ;RETURN FALSE IF NOT FOUND

;------------------------------- LOAD BINARY FILE INTO MEMORY
LOADFIL

MOVEA.L OIRPNIA3I,AO ;GETOIR.START
ADOA.L 126.AO
BSR LOINTELWORO
BSR BLKTOREC ,CONVERT START BLOCK TO START RE~
MOVE.L OO.RECOROIA31
MOVEA.L OIRPNIA3I.AO ;GET OIR.SIZE
ADOA.L 128,AO
BSR LOINTELLONG
ADD I•L 1511, DO ;CALC NlJIoeER OF RECQlOS TO LOAD
MOVEQ 19,01
LSR.L 01.00
MOVE.L OO,RECCNTIAJI ;FOR ALL RECORDS IN FILE

LOAD20 BSR TRANSFORM ;PUSH NEXT SECTOR/BLOCX

learn here is that the Sage loads sectors 1
and 2 as the bootstrap program. Sector 2
however is the first FAT and cannot con
tain boot program. This leaves 512 byt~s

for the program, less four bytes for
"BOOT" . Sage not only loads the
program, but then checks to see if it is the
correct program. The PROM reads the
first four bytes looking for "BOOT", if
not found it will abort to the debugger.
When found it jumps then to 404hex (just
pass "BOOT") and starts the BOOT
STRAP. The bootstrap must then load
the BIOS, jump to it, and then the BIOS
loads BOOS and command programs.

The Real Work
The real work involves getting enough

information and program samples from
the Sage BOOT loader, PROM, and BIOS
listings to figure out how to load the
BIOS. What must also be considered is
handling the FATs and DlR data as they
are in INTEL hex format. The 68000
stores address or data in memory with
high values followed by low values. The
Intel processors store the same infor
mation in LOW then HIGH, or backwar
ds from real life (this is one reason people
like Motorola products). Not only are
values in the directory stored LOW then
HIGH but the FAT table has 12 bit values
with the bits shifted around. It is a bit
funny, so just get a book and read about
it. The answers to our problem are found
in the sample BlOSs supplied by Joe Bar
tel who wrote K-OS. These sampie BlOSs
show just how to manipulate the Intel bits
and FATs with 68000 assembly language.

There are several ways we can boot load
the BIOS. If code length was no problem,
we would load all the FATs and direc
tories, shuffle through them till we found
our program, and ,hen load them. Space
being limited, I decided to cheat a bit. I let
the PROM load not only the boot
program, but also the first FAT. I
followed that by loading the first directory
sector. Next I checked those two sectors
for the file and its FATs, loading same.
This requires that the BIOS be loaded fir
st, before any other programs. You can
load it several times and even a few others
(not more than 16), but I would ex
periment with a freshly formatted disk
and only the three files first.

The next question is how do I get them
on the disk, especially the boot loader.
The peDOS comes with DEBUG as a
utility for reading disk data as well as
checking memory. I would look most of
the commands up in the manuals first so
you understand what you are doing. This

20 The Computer Journal/Issue '31

.................. RUN TIME CONSTANTS .
SYSNAM DC.B -SYSTEM BIO-,O

To write this to disk use the following c:c.ends
A>OEBUG ; loed debugger
-flDO 1000 00 ;eleer-.ory
-NBOOT.I£)(;n_ of source file to load
-L ; load file Into lIIMOry at lOOIlex
~S:~OO \ 0 1 ;wrtte..-ory starting at 400 hex

;wrlte drive B starting with logical
; sectOl" zero and wr I tes 1 sectOl"

-Q ;exlt to syst_

;......................... VMIABLES
ORG BOOT_VM

;
VMS EQU S

;
RECORD EQU S-VMS

DS.L. I ;L.OGICAl. RECORD TO RUDIWRITE
FNoIWN EQU S-VMS

DS.L I ;L.OAD FILElWo1E
L.OAOPN EQU S-VMS

DS.L I ;L.OAD ADDRESS
DIRPN EQU S-VMS

DS.L I ;DIRECTORY ENTRY
RECOlT EQU S-VMS

DS.L I ;LOAD RECORD COUNTER
RTNAOO EQU S-VMS

DS.L I ;RETRUN ADDRESS
ORIVE EQU S-VMS

DS.L 1
SECTOR EQU S-VMS

DS.L I

END

, J

,J

I ..•·"

,11

this might give you the proper value, but
then it might just give you all zeros in
stead. I kept sending those zeros until I
realized what was going on.

lt gets more complex when we talk
about position independent code. In
position independent code, all loads and
stores are done off of values stored in ad
dress registers. These become base ad·
dresses and you offset or point to a
memory location off of that register.
Words point to the flfst 16 bits, with the
values going to the lower 16 bits of the
destination. The same operation as a
Long will load the flrst 16 bits as high
values, then the next 16 as low values.
This problem became very important
when calling Sage routines, as they are
values pushed onto the stack. You can
push «A7)-) or pop «A7) +) values as
either words or longs, but whatever you
do, both ends must be the same. I messed
up and pushed some longs that should
have been words, only to have unsuc
cessful reads.
DoiDa lt

I have supplied some code showing
what the boot loader is like, and the num
ber of routines needed. Included with the
sample is the dialog used with DEBUG to
get the mes on the disk. The steps go like
this for the boot loader: save disk drive
value (to make sure we continue to boot
from it); print a message so we know we
got this far; load the flrst DlR sector
(remember the FAT was loaded with
BOOT loader); fmd the me name and sec
tor needed for loading the BIOS me; load
those sectors; jump to the BIOS. You
could save some time if you knew exactly
which sectors to load, but then every time
you made a minor change, the boot loader
would need changing. Putting in messages
may seem a luxury, but for systems that
don't come up, knowing which routine
failed become very important. A common
way, and one possible here, is just output
ting carriage returns and linefeeds. In the
Sage that is a simple call or JSR to the
PROM.

The Sage PROM deals with sector
locations as blocks, and does not use track
or side information. Their sector numbers
start with ZERO and not ONE so you
need to watch out for that. This made it
simple as the record number, becomes the
block number, which becomes the sector
number and gets passed to the disk read
routine. The Sage books talk about dif
ferent formats, but I found that not to be
true. I had forgot that the block numbers
start at zero also, and had subtracted one
from the record number (sectors start at I,

it will show you the special considerations
needed in the 68000 assembly language.
Now I think the 68K is a lot easier to
program than Intel chips, but the struc
ture does require you to remember some
simple principles. The 68K is a 32 bit
machine and can address data either as 8,
16, or 32 bits. In assembly we use .B, .W
and .L respectively for BYTE, WORD,
and LONG. I got sloppy copying code
from the Sage boot loader and shifted a
.W for a .L. Depending on the operation

-HTPl-SAGE BOOTSTRAP-, 0
-LOADING BIOS-,O
"READ ERROR-, 0

10,00
14,AO
-(AO),DO
18,00
-(AO),DO
18,00
-(AO),DO
18,00
-(AO),DO

10,00
I (AO),DO
18,00
(AOI,OO

;
INITMSG DC.a

MSGI DC.a
MSG2 DC.B

NXBLIO AHOI.W IOfFFH,OO;ELS£ MASK OFF HIGH NiBBlE
RTS; LOAD A WORD STORED IN INTEL FORMAT

LDINTELwau>
I()VEQ
I()VE,B
LSL.L
I()VE.B
RTS; LOAD A LONG STORED IN INTEL FORMAT

LD INTELLONG
I()VEQ
ADOO.L.
I()VE.a
L.SL.L
I()VE.B
LSL.L
I()VE.B
LSL.L
I()VE.a
RTS

;--------- CONVERT L.OGICAl. REcam TO SECTOR/SAGE BLOCK
TRANSfQU4

I()VE.L. REcam(A),DO
I()VE.W DO,SECTOR(AJ)
RTS

program can read and write data to any
given sector. You can also modify mes
and save them by me name. To prepare
the boot disk you will need to do both
operations. The first step is to prepare the
boot me. I used my favorite editor on the
sample BIOS supplied by Hawthorne and
pared it down to the essential items, and
then used the caIIs to the PROM to load
individual sectors.

There is another good reason to start
with the bootloader flfst, it is simple, and

The Computer Journal/Issue '31 21

BIO LOADER TEST PROGRAM

Tnt Progrem

USED TO SEE IF BOOTSTRAP LOADER WORKS
RENAME FILE TO SYSTEM.BIO FOR LOADING
AT OBOOH USES PROM TERMINAL I/O FOR
SAYING IT GOT THERE PROPERLy •••••

the command and operate programs are
position independent code so they can be
anywhere, so could your BIOS. The only
MUST do is put that jump table below
OPERATE.BIN and COMMAND.BIN
just above operate. I wrote and saved my
BIOS as one file starting at AOOhex and
ending at I FFFhex. That included the
jump table and pre-zeroing out of variable
memory locations (done by the assem
bler).

There are some other items that you
must also learn about concerning the
jump table. Each routine has certain items
that must occur when the routine is jum
ped to. Typically items are pushed onto
the stack (this case A4) and some status
value returned on the stack after com
pletion. Some routines must have this ac
tion, otherwise the system will go to never
never land: I made lists and tables to help
me out here as the manual is incomplete in
this respect. I will go into more detail next
time on these important steps. Till next
time, read the manual and remember that
the OPERATE.BIN is a HTPl program.
HTPl programs must preserve registers
A7 through A3 and 07. Your BIOS must
not change these registers. Some variables
and parameters are supplied by the BOOS
as pointed to by A6. Read the HTPl user
manual and pay close attention to the
assembly language section.

This is by no means a complete
coverage of everything needed to bring up
the Sage or K-OS ONE. My major
problem was choosing a direction to start
with (I could have brought it up under the
Sage's p-system), but once I started things
fell into place easily. Next time I will cover
more details about the BOOS and
operating system. I will be contacting Joe
about supplying more "how I did it"
details as well as how he is doing on his in
stallation manual. I am sure ! missed
something that you might not understand,
so write us here at TCJ, and I will answer
it next time. •

;PROGRAM START
;TERMINAL STRING
;CRLF AT TERM
;DEBUG ENTRY

samples, then a week programming the
bootloader. I then took the boot loader
and added terminal, printer, and a fuller
disk 110 operation and used it as the
BIOS. This was still making calls to the
PROM and loading sectors one at a time
(2 minutes to load the system), but it
showed me it worked and that I was on
the right track. Next I need to do the disk
110 in the BIOS with. !rack and sector ac
tivity. I may later go back and change the
BOOT loader to load the BIOS in one
move, speeding that operation up. later
also I will put in interrupts and clock ac
tion, but then I will have the K-OS run
ning and not be using the PC system.

A few fine points which need to be
stressed are program locations. The boot
loader in the Sage must go at 4OOhex. I
Allocated buffer space, by putting the
BIOS at AOOhex. The BIOS must include
or load a jump table lOOhex lower than
the OPERATE.BIN location. Until you
have a chance to recompile the jump
locations to routines into the BOOS or
OPERATE.BIN, it will look for them
IOOhex below the starting location. Both

OOOOOAOOH
OOFE0018H
OOFEOOICH
OOFEOOIOH

"BIOS PROGRAM LOADED ".0

EQU
EQU
EQU
EQU

TERM::RLF
MSG1.AO
TERMTEXT
TERMCRLF

DEBUG

JSR
LEA
JSR
JSR

JM>

I4SGI DC.B

BIOS CODE
TERMTEXT
TERliCRLF
DEBUG

records/blocks go from 0). I found that
out after trying to load a simple BIOS test
program (also included) and found it
200hex later in memory. This explains
why any disk failures should return you to
your debugger so you can check memory
before a reset destroys what did happen.

The assembler I use was supplied by
Hawthorne and assembles into Intel Hex
format. The PC DEBUG will load those
programs and you can move them around
before letting it save them to disk. This
assembler worked fine and only gave me
problems once. I had incorrectly defined
values in a table (used DS.l not DC.l)
which changed the program counter
which then caused all branch instructions
to be out of range. That shows that it does
check for programmer mistakes, which
helps us rusty old dogs.

.
SCRATCH DC.L

END

TO LOAD TH I5 PROGRAM USE "SODS DEBUG AND THE FOlLOW ING
A>DEBUG
-Fl00 3000 00 ;FILL I14EMORY WITH ZEROS
-NBIO.HEX ;NAME OF FILE TO LOAD
-L ;LOAD FILE INTO I14EMORY
-MAOO 2000 CS:100 ;MOVE FILE STARTING AT AOO HEX

;WHICH IS LOADING ADDRESS OF THE BIOS
; PROGRAM. MOV ING IT IN MEMORY TO 100 HEX
;FOR PROPER SAVING TO DISK

-RCX ;TELL SYSTEM HOW MUCH TO WRITE
CX: 200 ;SAVE ONE SECTOR TO DISK

-NSYSTEM.BIO ;TELL NAME TO SAVE UNDER
-W ;WRITE IT TO DISK
-Q ;QUIT DEBUG

FOR THE FINAL BIOS USE RCX AND SET CS:??? TO LENGTH OF BIOS
TYPICALLY 1800 HEX LONG IF USING AOO TO lFFF HEX.

Closing
I am running a bit long, so I will try and

tie up loose ends now. After the boot
loader worked, I had the BIOS running
(well sort of) in one day! I spent about a
week studying the Sage code and K-OS

22 The Computer Journal/Issue 131

The lCPR3 Corner
by Jay Sage

'11

In my last column I said that I would discuss the progress I
have been making with a new version of ZEX, the memory-based
batch processor for ZCPRJ. As frequently happens, however,
another subject has come up and preempted my attention. I
thought I would still get to ZEX later in this column, but the
column is already by far the longest I have written. So ZEX and
other matters planned for this time will have to wait. For ZEX
that is not a bad thing, since I still have a lot of work to do on it,
and by two months from now there should be considerably more
progress.

L'Affaire ARUNZ: J'Accuse
Not too long ago in a message on Z-Node Central, David Mc

Cord-sysop of the board and vice president of Echelon-leveled
a serious accusation against me: that I have failed to provide
proper documentation for my ARUNZ program. I immediately
decided to mount a vigorous defense against this scurrilous charge
using all the means at my disposal, including the awesome power
of the press (Le., this column in The Computer Journal).

Unfortunately, I find my defense hampered by a small
technicality. True, many other people, faced with this very same
impediment, have seemingly not been discouraged in the slightest
from proceeding aggressively with their defense. However, I lack
the character required to accomplish this. What is this
technicality? It is the fact that the charge is true.

Excuses, Excuses
An effective defense being out of the question, perhaps I can at

least offer some lame excuses.
First of all, it is not as true as it seems (if truth has degrees) that

I have provided no documentation. There is a help file,
ARUNZ.HLP, that at this very moment resides, as it has for
years, in the HELP: directory on my Z-Node RAS (remote access
system). Way back when ARUNZ was first made available to the
user community, Bob Frazier was kind enough to prepare this
help me for me, and it was included in the LBR file that I put up
on my Z-Node. As a series of upgraded versions appeared, I
began to omit the help file to avoid duplication and keep the new
LBR files as small as possible. After a while, of course, the
original library that did include the help file was removed from
RASs. Hence the impression that there is no documentation. Of
course, by now that help file is rather obsolete anyway.

If you are observant, you may have caught in the previous
paragraph the deliberate circumlocution "made available to the
user community." Why did I avoid the shorter and more natural
expression "released?" Because ARUNZ has still to this day
(more than two years-or is it three now-after its first
'availability'), not actually been released. Why? Because I still
have not finished it. It is still in what I consider to be an incom
plete, albeit quite usable, state. A few more tweaks, a couple of
additional features, a little cleaning up of the source code, a
detailed DOC file ... and it should be ready for a full, official
release.

ARUNZ is, regrettably, not my only program that persists in
this state. It is simply the oldest one. ZFILER and NZEX (new
ZEX) suffer similarly. One might even say that this has become
habitual with me. What happens, of course, is that I don't find

The Computer Journal/Issue *31

the time to code that one little crucial additional feature before
some other pressing issue diverts my attention. And by the time I
do get back to it, I have thought of still another feature that just
has to be included before the program should be released.

One solution would be to not make the programs available until
they are really complete. There are two reasons why I have rejec
ted this approach. First of all, though not complete to my
satisfaction, the programs are in quite usable condition. It would
be a shame if only I-and perhaps a small group of beta
testers-had been able to take advantage of the power of ARUNZ
during these two or three years.

The second problem with holding the programs back is that a
lot of the development occurs as the result of suggestions from
other users, who often have applications for the program that I
never thought of and would never think of. In a sense, I have
chosen to enlist the aid of the entire user community not only in
the testing process but also in the program development process.
And I think we have both benefited from this arrangement.

The procedure I have developed for keeping track of these
'released' test versions is to append a letter to the normal version
number. As I compose this column, ARUNZ stands at version
0.90, ZFILER stands at 1.0H, and NZEX stands at 1.00. When
final versions are released, I will drop the letter suffixes (except
for NZEX, which will become ZEX version 4.0).

The usability of the programs is probably the fundamental fac
tor that keeps them in their incomplete state. When one of them
has some serious deficiency or or simply begs for an exciting new
feature, it gets my attention. Once it is working reasonably well,
however, I can ignore it and devote my attention to other things
that badly need fixing. That is how I recently got started on
NZEX.

Making Amends
Since excuses, no matter how excusing, do not solve a problem,

I will take advantage of this column to make amends for the poor
state of the ARUNZ documentation by providing that documen
tation right here and now. I hope it will lead more people to make
more complete and effective use of ARUNZ, which for me has
been the single most powerful utility program on my computers.

To understand ARUNZ, one must first understand the concept
of the ZCPR alias, and to understand aliases one must under
stand the multiple command line facility. I have written some
things about these subjects in earlier columns, notably in issues
#27 and #28, but I will start more or less from the beginning here.

Multiple Command Lines
One of the most powerful features of ZCPR3 is its ability to ac

cept more than one command at a time and to process these
commands sequentially. Quoting from my column in TCJ issue
#27: The multiple command capability ofZ System . .. is impor
tant not so much because it allows the user to enter a whole
sequence of commands manually but rather because it allows
otherprograms to do so automatically.

Obviously, in order to process multiple commands, the list of
commands (at least the unexecuted ones) must be stored in some
secure place while earlier ones are being carried out. In the case of
ZCPR3, there is a dedicated area, called the multiple command

23

I.···~

''ll

, ,j

, ..,
,;

'"
, ..

..

SlR180$1
IF -ER
SLRNK / A: 100,$ I/N,$ I,VLIB/S,Z3LIB/S,SYSLIB/S,/E
FI

can then be used to assemble and (if there were no errors in
assembly) link any program. The expression $1 is replaced by the
first token on the invoking command line after the name of the
alias. A token, we should note, is a contiguous string of charac
ters delimited (separated) by a space or tab character. Thus with
the command

F~r ease of reading, I follow the convention of putting the alias
name field in upper case and the script strings in lower case, but
you can use any convention (or no convention) you like, since
ARUNZ does not generally care about case (the sole exception
will be described later).

To make the ALIAS.CMD me easier to read, you can include
comment and formatting lines. Blank lines are ignored and can be
used to separate groups of related alias definitions. Also, any line
that begins with a space (no name field) will never match an alias

ASMLINK MYPROG

the string "MYPROG" will be substituted for each of the three
occurrences of the expression "$1" in the script to form the
command line. Any commands in the MCl after the alias com
mand are appended to the expanded script.

The Advent of ARUNZ
One day it suddenly struck me that Conn-style aliases are ex

tremely inefficient with disk space. Each one contains, of course,
the prototype command line (the script), which is unique and
essential to each alias, but which is at most about 200 characters
long and often much less (17 and 67 in the two examples above, if
I counted right). But each one also contains a complete copy of
the script interpreter and command line manipulation code, about
IK bytes long, which is exactly the same in each alias. Why not, I
thought, separate these two functions, putting all the scripts into
a single, ordinary text me (ALIAS.CMD) and the alias processing
code in another, separate file (ARUNZ for Alias-RUN-Zcpr)?

Because there is only a single copy of the ARUNZ code in the
system rather than a copy of it with each alias, I felt that I could
afford to expand the code to include many additional features, in
particular much more extensive parameter expansion capability.
These features will be described later.

last scriptLAST-NAME-FIELD

The ALlAS.CMD File
Let's begin by looking at the structure of the ALIAS.CMD me.

First, we should make it clear that ALIAS.CMD is a plain, or
dinary text me that you create using your favorite text editor or
word processor (in non-document mode).

Each physical line in the file contains a separate alias definition.
At present there is no provision for allowing definitions to run
over to additional lines, so for long scripts your editor has to be
able to handle documents with a right margin of more than 200
characters. As I sit here composing this column, it occurs to me
that a nice solution to this problem might be to allow the
ALIAS.CMD file to be created by a word processor in document
mode and to have WordStar-style soft carriage returns be inter
preted by ARUNZ.COM as line-continuation characters. I will
experiment with that possibility after I finish this column, and if it
works there may be an ARUNZ version O.9H by the time you are
reading this.

Each alias definition line contains two parts. The first part, the
name field, defines the name or names by which the alias will be
recognized, and the second part, the script field, contains the
script associated with that name or those names.

The name field must start in the very leftmost column (no
leading spaces), and the two fields are separated by a space or tab
character. Thus ALIAS.CMD might have the following general
appearance:

FIRST-NAME-FIElD first script
NEXT-NAME-FIElD next scriptWe assume here that our RCP (resident command package) in

cludes the SP (space) command.
Such a script can have only a single purpose. Much more

powerful capability is provided when the script can contain
parameter expressions that are filled in at the time the command is
run. The aliases produced by ALIAS.COM support a number of
parameter expressions, including the $I, $2, .. , $9 parameters
familiar from the SUBMIT facility. An alias called ASMLINK
with a script containing the following command sequen
ce

line (MCl) buffer, located in the operating system part of
memory. It stores the command line together with a pointer (a
memory address) to the next command to be executed. Every time
the ZCPR3 command processor returns to power, it uses the
value of the pointer to determine where ~o resume processing the
command line. Only when the end of the command line is reached
does the command processor seek new command line input.

Storing multiple commands in memory is not the only
possibility. Another secure place to keep them is in a disk file.
This i~ in some ways what the SUBMIT facility does using the file
$$$.SUB. The main drawback to this approach is the speed
penalty associated with the disk accesses required to write and
read this file. There is also always the possibility of running out of
room on the disk or of the diskette with the $$$.SUB file being
removed from the drive. Using a memory buffer is faster and
more reliable.

Digital Research's most advanced version of CP/M, called
. CP/M-Plus, also provides for multiple command line entry, but it

does it in a rather different, and I think less powerful, way. When
a multiple command line is entered by the user, the system builds
what is called a resident system extension (RSX), a special block
of code that extends the operating system below its normal lower
limit. This RSX holds any pending commands. But since it is not
always present and is not at a fixed, known location in memory,
there is no straightforward way for programs to manipulate
multiple command lines. On the other hand, this method does
provide a bigger TPA when only single commands are entered.

In a ZCPR3 system, the MCl has a fixed size and is in a fixed
location. Moreover, a ZCPR3 program can find out where the
MCl is located by looking up the information about it in the ZC
PR3 environment descriptor (ENV), another block of operating
system memory containing a rather complete index to the features
of the particular ZCPR3 system. The location of the ENV is the
one key fact that is conveyed to all ZCPR3 programs. Prior to
ZCPR version 3.3, the address of the ENV had to be installed into
each program manually by the user before the program could be
used; with ZCPR33 this installation is performed automatically
by the command processor as the program is run.

The Alias Program
One of Richard Conn's brilliant concepts in designing ZCPR3

was the utility program he called ALIAS, whose function is to
create COM files that, in turn, build multiple command lines and
insert them into the MCl buffer. When ALIAS is run, it prompts
the user for (I) the name of the alias me to create and (2) a
prototype command line, nowadays called a script. When the
resulting COM file is run, it takes the script, uses the information
in it to construct a complete command line, and then places that
command line into the MCl buffer so that the commands it con
tains will be run.

The simplest script would be nothing more than a completely
formed command line. For example, if we wanted to have a
command (COM file) that would display the amount of free space
on each of drives A, B, and C, we could make an alias
SPACE .COM containing the script

SP A:;SP B:;SP C:

24 The Computer Journal/Issue '31

The Name Field in ALIAS.CMD
The name field can contain a simple name, like SPACE or

ASMLINK, but more complex and flexible forms are also sup
ported. First of all, the name field can consist of any number of
individual name elements connected by an equal sign (with no in
tervening spaces, since a space would mark the end of the name
field). Thus a line in ALIAS.CMD might have the following ap
pearance:

name and will thus have the effect of a comment line. You can use
this to put titles in front of groups of definitions.

To tell the truth, I always wanted to be able to format the
ALIAS.CMD file as I just described, ~ut I never got around to
adding the code to allow it. As I was sitting here writing just now,
I suddenly decided to see what would happen if the ALIAS.CMD
file contained such lines. With BGii in operation, a quick" from
the keyboard took me to the alternate task, and I gave it a whirl.
Imagine my surprise and delight to discover that the formatting
already works! No new code is required.

Secondly, each name element can represent multiple names.
There are three characters that have special meanings in a name
element. The first is a question mark ('?'). As with CP/M file
names, a question mark matches any character, including a blank
space. Thus the alias name DIR? will match any of the following
commands: DIR, DIRS, DIRR, and so on.

The second special character is currently the period ('. '). For
reasons that I will not go into here (having to do with a new
feature under consideration for ZCPR34), I may change this to
another character (perhaps the asterisk), so check the update
documentation with any version of ARUNZ beyond 0.9G. The
period does not match any character, but it signals the com
parison routine in ARUNZ that any characters after the period
are optional. If characters are present in the command name, they
must match those in the alias name, but the characters do not
have to be present. For example, the alias name field

NAMEl =NAME2=NAME3 script string

There is one use of the default alias that can augment the ex
tended command processing power of ZCPR33. When ARUNZ
has been set up as the ECP and a command is found neither as a
system command, nor COM file, nor ARUNZ alias, one might
want to try running the command from COMMAND.LBR using
the LX program. This is a kind of chained ECP operation.
ARUNZ is the first ECP; LX is the second. This can be accom
plished, using version 1.6 or later of LX, by adding the following
line at the end of the ALIAS.CMD file:

:ECP-CHAIN Ix / SO S*

The meaning of the parameters SO and S* will be explained later.
With this default alias, if a command cannot be resolved by a
specific ARUNZ alias, then an LX command line will be
generated to search for a COM file with the name of the com
mand in COMMAND.LBR. The special parameter 'I' as the first
command line parameter to LX tells LX, when it cannot resolve
the command either, to pass to the ZCPR3 error handler only the
user command line (i.e., to omit the "LX / " part of the com
mand).

This might be a good time to note that ARUNZ alias names are
not limited to only eight characters or to the characters allowed in
disk file names. For example, you have a perfect right to define an
alias with the name FINDFILES (nine letters) and to invoke it
with the command ARUNZ FINDFILES. If ARUNZ has been
set up as your extended command processor (see my book The
ZCPR33 User Guide for a discussion of ECPs), then when you
enter the command FINDFILES, the command processor will fir
st look for a disk file FINDFILE.COM, since it truncates the
command name to eight characters. If this file is not found, the
command processor will then, in effect, run ARUNZ FIN
DFILES, including all nine characters. I have not thought of any
uses for aliases with control characters in their names, but you can

SAGE MICROSYSTEMS EAST
Seiling & Supporting The Best In 8-Blt Software

'.

, ..1;

iJt

, ·t

I"
, ,/

FIND. FILE = FILE. FIND

will match any of the following commands (and quite a few others
as well): FIND, FINDF, FINDFILE, FILE, FILEF, FILEFIND.
It will not, however, match FILES or FINDSTR or FINDFILES.

I have never had any occasion to make use of the capability,
but the two special characters can be combined in a single name
element. Thus FIND.FI?E matches FINDFILE and FINDFIRE
but not FINDSTR, and ?DIR.R matches SDIR, SDIRR, XDIR,
and XDIRR (but not DIR). I think you can see that the special
characters allow for very compact expressions covering many
names.

The third special character is the colon (':'). If any name
element begins with a colon, then it will match any alias name
whatsoever. This is called the default alias, the alias to be run if
no other match is found. Since ARUNZ scans through the
ALIAS.CMD file from top to bottom searching for a matching
name, if the default name is used at all, it makes sense only as the
last alias in the file, since no alias definitions in lines below it can
ever be invoked. Note that letters after the colon have no
significance; you may include them if you wish as a kind of com
ment.

One possible use for the default alias would be a line like the
following at the end of the ALIAS.CMD file:

:DEFAULT echo alias SO not found in alias.cmd

If no specific matching alias is found, this default alias will report
that fact to the user as a kind of error message. I do not recom
mend using the default alias in this way, however, because it will
interfere with ZCPR33's normal invocation of the error handler
when ARUNZ has been set up as the extended command
processor (ECP) and a bad command is entered.

The Computer Journal/Issue "31

• Plu·Perfect Systems
• Backgrounder II: switch between two or three running tasks

under CP/M (S75)
- DateStamper: stamp your CP/M files with creation, modification,

and access times ($49)
• Echelon IZ·SYStem SDftwlre)

. ZCPR33: full system $49, user guide $15
- ZCOM: automatically installing full Z·System ($70 basic package, or

S119 with all utilities on disk)
- ZRDOS: enhanced disk operating system, automatic disk logging

and backup ($59.50)
- DSD: the incredible Dynamic Screen Debugger lets you really

see programs run (S130)
• SLH Systems (The Unlmltl Assembly Languige Tools)

• Assemblers: ZBOASM (ZBO), SlR1BO (HD641BO), SLRMAC (BOBO),
and SlROB5 (BOBS)

• linker: SlRNK
- Memory-based versions (S50)
• Vir1ual memory versions ($195)

• NlghtOwl (AdvlnCld TelecommunlCltlDns)
- MEX·Plus: automated modem operation (S60)
- Terminal Emulators: VT100, TVI925, DG100 (S30)

Same-day shipping of most products with modem download and suppor1
available. Shipping and handling $4 per order. Specify formal.
Check, VISA, or MasterCard.

Sage Mlcrosystems East
1435 Centre St., Newton, MA 02159

Voice: 617-965-3552 (9:ooa.m.-11:15 p.m.)
Modem: 617-965-7259 (24 hr., 300/1200/2400 bps,

password =DDT, on PC-Pursuit)

25

, .J

, J

'1

"

Except for the '0' parameter, these parameters are familiar from
the CP/M SUBMIT facility. The expression SO is an extension
used to represent the command verb itself. Just think of the
tokens on the command line as being numbered in the usual com
puter fashion starting with zero instead of one. A tolcen that is ab
sent from the command line returns a null string (no characters)
as with $5 in the above example.

Note that $-4 is the null string; that is, S-4 will be replaced
by no characters at all.

Also note that there is no leading space in the string assigned to
S·. ALIAS.COM (and the earliest version of ARUNZ, I believe)
had a bug in this respect in that it did include the leading space in
the command line tail, since that is how the tail is stored by the
command processor in the buffer beginning at memory address
OOSOH. The script "fmd S·" when invoked with the tail "string"
then became "find string" with two spaces between "find" and
"string". In such a case, Irv Hoffs FIND program failed to work
as expected, probably because it was looking for" string" with a
leading space.

Complete Token Parameten
The digit parameters '0' through '9' represent the correspon

ding token in the command line that is being parsed. In the exam
ple command line above the digit parameters have the following
values:

Character Parameten
The parameters'S' and ,,,, are provided to allow the two

parameter lead-in characters to be entered into the command line
text. Many users, present company unhappily included, have
made the mistake of trying to enter a dollar sign directly into the
alias script. If this is done, the dollar sign is (mis)interpreted as a
parameter lead-in character. You must put 'SS' in the script to get
a single dollar sign in the command line.

The worst example I have seen (and committed) of this kind of
error is in a command like "PATH AO SS AO". This looks perfec
tly reasonable and does not produce any kind of error message
when it runs (as "PATH AO SO AO" would, for example, when SO
got expanded to 'PATH'). Unfortunately, it runs as "PATH AO
$ AO", where the single dollar sign now means current-drive/user
o(this is perhaps a flaw in the way the PATH works, but that is
the way it is). The proper form of the script is:

PATH AO SSSS AO

where each pair of dollar signs turns into a single dollar sign.

Complete Command-Tail Parameten
The parameters '.' and '-' refer to entire sections of the com

mand line tail. The asterisk represents the entire tail exactly as the
user entered it. The parameter expression $-n, where "n' is a num
ber from 0 to 9, represents the command tail less the first "n'
tokens (a token was defined earlier). The parameter S-o has the
same meaning as S· .

Many users have confused 'command line tail' with 'command
line'. The two are not the same. A command line consists of the
command name (the 'verb') and the tail. Thus the command line
tail is the command line less the first token. Perhaps some exam
ples will help. Suppose the command line is

command tokenl token2 token3 token4

Then

S· = "tokenl token2 token3 token4"
S-2 = "token3 token4"
$-4 = ""

"command"
"token I"
""

so
SI
S5

tly.

define such aliases if you wish.
Another fine point to be noted is that both leading blank spaces

and an initial colon are stripped from the command name before
scanning for a matching alias name. It is obvious that if leading
blanks were not stripped, a leading blank would prevent any mat
ch from being found. The colon is stripped so that a command en
tered as ":VERB" will match an alias name of "VERB" without
the colon. If a directory specification is included before the colon,
it will not be stripped. When the BADDUECP option is enabled
in the configuration of ZCPR33, this allows illegal directory
specifications to be passed to ARUNZ for processing.

The Script FIeld in ALIAS.CM»
The script field in the ALIAS.CMD file contains the prototype

command line to be generated in response to a matching alias
name. The script contains three kinds of items:

(I) characters that are to be put into the command line direc-

digit (0 .. 9)
D U
F N T

S "
•

R M
I Z

(2) parameter expressions that ARUNZ is to evaluate and
convert to characters in the command line.

(3) directives to ARUNZ to perform special operations.

There is nothing that has to be said about the first class of
characters. They comprise any characters not covered by the
other two sets. The simple example of the SPACE alias, which
would appear in ALIAS.CMD as:

SPACE sp a:;sp b:;sp c:

has only direct characters. There are no special directives and no
parameters to evaluate.

ARUNZ Parameten
ARUNZ supports a very rich set of parameter expressions,

which we will now describe. As rich as the set is, there are still im
portant parameters that need to be added. Some of these will be
mentioned later in the discussion. First let's see what we can
already do.

Parameters begin with either a caret (' " ') or a dollar sign ('S').
The former is quite simple; it is used to signal a control character.
The ASCII representation of the character following the caret is
logically ANDed with IFH, and the result is placed into the com
mand line. Of course, control characters other than carriage
return and line feed can equally well be placed directly into the
script.

At present there is no trap to prevent generating a null charac
ter (caret-space will do this: space is WH, and
WH & IFH = OOH). If this is used, the resulting null will effec
tively terminate the command line. Any characters that come af
ter the null character will be ignored by the command processor.
This could conceivably be useful for deliberately cancelling pen
ding commands in a command line, but 1 have never used it. In
fact, I was surprised to find that I did not have a trap for it. On
thinking about it now, however, it seems best to continue to allow
it. Just "user bewareI" when it comes to employing it.

Parameters introduced by a dollar sign provide much more
varied, interesting, and powerful capabilities. The special
ARUNZ directives are also introduced by a dollar sign. A com
plete list of the characters that can follow the dollar sign, grouped
by function, is given below. Detailed discussion of each will
follow.

21 The Computer Journal IISlue 131

i .~

'~

"

'.

I".

$.2 • lit!

$.1 • "FT1"

$:) • lin

S:2 • "FN2"

S:I • "FNI"

so • "COMIIANO"SUO· "1"

$"prompt" or $'prompt'

S) • "2:.FT)"
SO) • "s" $U3 • "2 11

S2 • "C: FN2"
S02 • "eft SU2 • "1 11

SI • "ROOT:FJH.FTI"
SOL· "A" SUI· "IS"

Sou· "a"

User Input Parameters
The single and double quote parameters are used for prompted

user input. The forms of the parameter expressions
are:

Note the value of the following parametric expression:

DIVI:$:1.S.1 = "A15:FNI.FN2"
You can see that the 'D'

and 'V' parameters can be used to convert a named directory into
its drive/user form.

System File Name Parameters
The ZCPR3 ENV contains four system file names, each with a

name and a type. These file names, numbered O.. 3, are used by
various programs, especially shells. VFILER and ZFILER, for
example, keep the name of the file currently pointed to in system
file name I. These file names can also be read and set using the
utility program SETFILE.

The parameters 'F', 'N', and 'T' followed by a digit from 0 to 3
return, respectively, the entire filename (name.typ), file name,
and file type of the specified system file.

When the parameter $" or $' has been detected, any characters in
the script up to the matching parameter character or the end of
the script line are echoed as a prompt to the user's screen. These
characters are echoed exactly as they appear in the script; no con
version to upper case is performed. The prompt string for the
double quote parameter can contain single-quote characters, and
the prompt string for the single quote parameter can contain
double-quote characters. There is, at present, no way to include
the type of quote character used as the parameter in the prompt
string.

After the prompt has been output to the console, ARVNZ
reads in a line of input from the console (user input). At this point
there is a subtle but important distinction between the two user
input parameters. The single quote form takes the entire text
string entered from the console and places it in the command line.
In particular, this input may contain semicolons, allowing the
user to enter multiple commands. The double quote form ignores
a semicolon and any text thereafter. This is intended for secure
systems, where it prevents the user, when prompted for a program
option, from slipping in complete additional commands.

One pitfall to which many users have succumbed is the failure
to appreciate that the user input parameters perform their fun
ction at the time that ARUNZ is running and interpreting the
script, not when the program in the command line is running.
Consider the alias definition:

ERAFILE dir $l;era $"File name to erase: "

The intention here is to first display a list of the files that match
the first command line token and then to allow the user to enter
the one to be erased. This is not what will happen. ARUNZ will
put up the prompt "File name to erase: " at the time the com
mand line is being built, i.e., before DIR is run. The prompt will
come before the directory display.

The way around this problem is to use two ARUNZ aliases as
follows:

ERAFILE dir Sl;/eraprompt
ERAPROMPT era S"File name to erase: "

ALIAS realverb S*

DnUn:$:n.$.n

As just mentioned, many users confuse the command line tail
and the command line. If you want only the tail, use the
parameter S·. If you want to represent the entire command line,
use the expression "SO S*". Most often it is the command line tail
that is to be passed to a command, 'and the ALIAS.CMD line will
read something like

Token Parsing Parameters
There are many instances in which it is extremely useful to be

able to break any token down into its constituents. The
parameters 'D', 'V', ':', and '.' do this. They assume that the
token is in the form of a file specification, which may have (1) a
directory specification using either a named directory or a drive
and/or user number; and/or (2) a file name; and/or (3) a file
type. Each of the four parameters above is followed by a number
from I to 9 to designate the token to parse ('D' and 'V' can also
have a 0). After discussing each one individually, we will give
some examples.

The parameter 'D' returns the drive specified or implied in the
designated token. If there is no directory specification or if only a
user number is given, then $Dn returns the default (logged) drive
at the time ARVNZ constructs the command line.

where 'n' is a digit.
Let us consider some examples. Suppose the following com

mand is entered at the prompt:

B1:WORK > command root: fn 1. ftl c: fo2 2:. ft3

and that COMMAND.COM is not found, so that the command is
passed on to ARVNZ and the extended command processor. Also
assume that the ROOT directory is A15. Then here are the values
of the parameters for the four tokens in the command:

WARNING-NOTE WELL: this is not necessarily the drive
that will be logged in at the time when that part of the command
actually executes!! This, too, has been the source of grief in the
use of ARVNZ. ARVNZ has no infallible way to know what
directory will be logged in when some future command runs; it
only knows what directory is the default directory at the time
ARVNZ itself is running.

This is a direct implementation of the common meaning of 'alias'
as another name for something. When ALIAS is invoked, we
simply want to substitute 'realverb' for it while leaving the com
mand tail as it was.

There are other occasions, however, as with the LX default
alias example given earlier, where the entire command line must
be passed. There are ~ill other occasions, such as in the first
default alias example above, where only the name of the verb used
is needed. Because a given script in ALIAS.CMD can correspond
to many possible alias names, it is important to have a parameter
that will return the name that was actually used in any particular
instance.

The 'V' parameter is similar in all respects to 'D', and the same
warning applies. The parameters $00 and SUO can also be used.
They always ?eturn the default drive and user at the time ARUNZ
interprets the script.

The parameter ':' represents the file name part of the token,
while the parameter '.' represents the file type part of the token.
One way to remember the characters for these two parameters is
to think that colon stands for the part of the token after a colon
and period stands for the part of the token after a period. Admit
tedly, 'N' for name and 'T' for type would have been more sen
sible, but as we shall see shortly, these are already used for
something else.

Generally speaking, the entire token can be represented
as

The Computer Journal/Issue '31 27

(1) providing synonyms for commands.
(2) trapping and/or correcting command errors.
(3) automating complex operations into single commands.

AppUcatioDS for ARUNZ Aliases
In this section I will Use a number of sample scripts to illustrate

various ways in which one can make use of the power of ARUNZ
aliases. I'm sure there are many I have not thought of, and I invite
you to send me your suggestions and examples. In all cases I will
be assuming that ARUNZ is the extended command processor
(typically renamed to CMDRUN.COM).

In general, one can identify the following classes of alias ap
plications:

if eq $mOOO7 c6; ;else;echo not allowed in remote mode;fi

The commands represented by the ellipsis" " will run only if
in local mode (BOOS apparently located at page C6H).

ARUNZ Directives
There are presently two ARUNZ directives. We have already

discussed one of them, 'I', under the user input parameters. The
other one is 'Z'.

Ordinarily, once ARUNZ has interpreted the alias script and
evaluated the parameters, it appends to the resulting command
line any commands in the multiple command line buffer that have
not already been executed. This is usually what one wants. There
is one possible exception.

As I discussed in issues #27 and #28 of The Computer Journal,
one sometimes wants an alias to invoke itself or other aliases
recursively. This can sometimes lead to problems with the build
up of unwanted pending commands that eventually causes the
command line to overflow the buffer space allowed for it. In such
a case one might want only the current expanded script command
line to be placed in the MCL, with any pending commands drop
ped. A $Z directive anywhere in the script will cause ARUNZ to
do this. Note that the directive is not a toggle; multiple uses has
the same effect as a singe use. Remember, however, that Dreas
Nielsen's alias recursion technique, described in issue #28 and in
examples below, is generally preferable to the technique using $Z.

Within the last category fall two special subclasses:

(a) performing 'get, poke, & go' operations.
(b) providing special functions like recursion and repetition.

Command Synonyms
The most basic use of aliases is to provide alternative names for

commands. Here are some examples from my personal
ALIAS.CMD file.

For displaying the directory of a library file, I now use the
program LLF. However, after years of using LDIR, both before
LLF was released and still on most remote access systems, I prefer
to use that name and have renamed LLF.COM to LDIR.COM.
Sometimes, however, I forget or want to be sure I am running
LLF and enter the command LLF explicitly. Then I am saved by
the alias line:

LLFldir $-

Similarly, I have recently begun to use LBREXT instead of
LGET. LGET is easier to type, and I am used to it, so I have the
alias:

LGET lbrext $-

LBREXT is so new that I did not want to rename it to LGET, sin
ce I might too easily forget which program the disk file really is. I
know I never have the old LDIR.COM around any more. In both
of these examples, the alias simply substitutes a different verb in
the command line; the tail is left unchanged.

Before the advent of ZCPR33, when path searching always in
cluded the current directory, I would speed up the disk searching
in these cases by including an explicit directory reference with the

Now when ERAFILE is run, it will display the directory and then
run the command "/ERAPROMPT". The slash here is a ZC
PR33 feature that indicates that the command should be sent
directly to the extended command processor. This saves the time
that would otherwise be wasted searching for a file named
ERAPROMPT.COM (actually, ERAPROMP.COM, since the
ninth character will be truncated from the name). If you are not
running ZCPR33 (but you should be!!) or are running BGii, use a
space instead. This will work with both ZCPR33 and BGii and
will have no effect in ZCPR30. I am using the slash in the exam
ples because a space is hard to see in print. When ERAPROMPT
runs and the user is prompted for the name, the directory listing
will already be on the screen.

Whenever console input is requested by any program, one must
keep in mind the possibility that ZEX will be running and con
sider the question of whether the input request should be satisfied
from the ZEX script or by direct user input. ARUNZ is con
figured, in the absence of a specific directive to the contrary, to
turn ZEX input redirection off during ARUNZ prompted input.
Thus, even if ZEX is running at the time ARUNZ is invoked, the
user input parameters will request live user input.

If you do want ZEX to be able to provide the response to
ARUNZ prompted input automatically from the ZEX script, then
you must include the ARUNZ directive SI ('I' for input redirec
tion) before the S" or S' parameter. The SI directive is effective
only for the next user input operation. After each prompted user
input operation, the default for ZEX input redirection is turned
off. The SI directive need not immediately precede the S" or $'
but there must be a separate SI for each input requested.

Register and Memory Parameters
Two parameters are provided for referencing values of the ZC

PR3 u~er registers and the contents of any memory location in the
system.

By Richard Conn's original specification, there were ten user
registers numbered from 0 to 9. However, the block of memory in
which those ten registers fall is actually 32 bytes long. Conn
designated the last 16 bytes of this block as 'user definable
registers', but he and others later used them in programs such as
Term3 and Z-Msg. As a result, one has to be very careful in
making use of them. The last 6 bytes of the first half of the block
were defined as 'reserved bytes'. Various uses have been made of
them as well.

The ARUNZ parameter 'R' can reference any of the first 16
bytes using the form SRn, where 'n' is a hexadecimal digit. The
decimal digits reference the true user registers, and the additional
digits 'A' through 'F' reference the reserved bytes. In the current
version of ARUNZ, the value is returned as a two character
hexadecimal value. However, I would like to provide in the future
a way to return the value in either decimal or hexadecimal form.
A complication with the decimal form is the need to indicate the
format: one character, two characters with leading zeros, three
characters with leading zeros, or the number of characters
required for the particular value with no leading zeros.

One of the uses I envisioned for this parameter, though I have
never actually used it this way, is for automatic sequential num
bering of files. Thus a script might include the string "copy
$:1$r3.$.1 =Sl;reg p3". This would copy the working file given
by token 1 to a new file with the hex value of register 3 appended
to the file name. For a file name of PROG.Z80 this might be
PROG03.Z80. Then the value of register 3 would be incremented
so that the next file name in sequence (PR0G04.Z80) would be
used the next time the alias was invoked.

The parameter 'M' is used in the form $Mnnnn, where 'nnnn'
is a precisely four-digit hexadecimal address value. The parameter
returns the two character hexadecimal value of the byte at the
specified memory address. I use this on my RAS to determine if
the system is running in local mode. The BOOS page at address
0007H has a different value when BYE is running. There might be
a script of the form:

28 The Computer Journal/Issue '31

script. Thus the two commands above might be:

LLF aO:ldir $
LGET aO:lbrext $-

This way the command processor would go straight to AO no mat
ter where I was logged in at the time~

With ZCPR33 one can bypass the path search for commands
that one knows are in ALIAS.CMD by entering the command
with a leading space or slash (assuming the usual configuration of
ZCPR33). Sometimes I might try to outfox the system and,
thinking LBREXT is the alias name, enter the command as
'/LBREXT ... '. So that this will work, I extend the alias lines
to:

LLF =LDIR aO:ldir $
LGET =LBREXT aO:lbrext S-

The command is an alias for itself!! Odd, bUi: useful. It is a good
idea if you do this, however, to be absolutely sure to include an
explicit directory prefix before the command name in the script.
If you don't, the following situation can arise. Suppose the alias
line reads:

TEST test S-

but for some reason TEST.COM is not on the disk (or at least not
on the search path). Now you enter the command TEST. The
command cannot be found as a COM file, so the command
processor sends it to ARUNZ. ARUNZ proceeds to regenerate
the same command, which again cannot be found, and so on until
you press the little red button or pull the plug. Not always to
complete catastrophe, but definitely a nuisance. With ZCPR33, if
the command has an explicit directory prefix, control is passed
directly to the error handler if the COM file cannot be found in
the specified directory. It figures that if you go to the trouble of
specifying the directory, you must mean to look there only.

Another use for synonyms is to allow a short-form entry of
commands. Here are two examples:

SLR.180 asm:slr180 $
ED.IT sys:edit $-

Synonyms are especially helpful on a' remote access system or
on any system that will be used by people who are not familiar
with it or expert in its use. Consider, for example, the task of fin
ding out if a certain file is somewhere on the system and where.
Some systems use FINDF, the original ZCPR3 program for this
purpose; others use one of the standard CP1M programs (WIS or
WHEREIS); and others have begun to use the new, enhanced
ZSIG program called FF. This can be very confusing to new users
or to users who call many different systems. The solution is to
provide aliases for all the alternatives. Suppose FF is the real
program in use. Then the following line in ALIAS.CMD will
allow all the forms to be used equally:

FINDF =WIS =WHEREIS ff S-

In fact, while I am at it, I usually throw in a few other forms that
someone might try and that are sufficiently unambiguous that one
can guess with some confidence that this is the function the user
intended:

FIND.FILE =FILE.FIND =WIS =WHERE. IS =FF aO:ff S-

Note that this single alias, which occupies only 46 bytes in
ALIAS.CMD (including the CRLF at the end of the line),
responds to 8 commonly used commands for finding files on a
system. Thus the cost is a mere 6 bytes per command!!

Trapping and Correcting Command Errors
Aliases can be used to trap commands that would be errors and

either convert them into equivalent valid commands or provide
some warning message to the user.

The Computer Journal/Issue *31

It is generally not desirable to have a very long search path,
because every time a command is entered erroneously, the entire
path has to be searched before the extended command processor
will be brought into play. On my SBlSO with its RAM disk, I
sometimes want the path to include only MO:, the RAM disk
directory. The RAM disk, of course, cannot contain all of the
COM files I use. For COM files that reside on the floppy disk, I
can include an alias.

For example, MEX.COM and all its associated files take up a
lot of disk space, and I keep them in a directory called MEX on
my floppy drive B. The ALIAS.CMD file can have the line:

MEX mex:mex S-

Without this alias I would have to remember to enter MEX:MEX
manually. If I forgot, I would get the error handler and then have
to edit the line to include the MEX: preflx. The 16-byte entry
above in the ALIAS.CMD file saves me all this trouble.

Every computer user probably has some commands whose
names he habitually mistypes (switching 'g' and 'q' for example
or reversing two letters). My fingers seem to prefer 'CRUNHC' to
'CRUNCH', so I have the following alias line:

CR. UNHC crunch $-

Note that while I am at it, I allow the shorter form CR as well. My
fingers like that even better.

On a remote access system there are many situations where
correcting common mistakes can be handy. Richard Jacobson
(Mr. Lillipute, sysop of the RAS that now serves TCJ subscribers)
calls my Z-Node quite often. Either he has a Wyse keyboard with
very bad bounce (as he claims) or he is a lousy typist (and refuses
to admit it). When he wants to display a directory, his command
is more likely to come out DDIR or DIRR than it is to come out
correctly as DIR. So I added those two forms to my existing alias
which allowed XD and XDIR (and IDIR); it now reads:

XD.IR =DDIR =DIR.R aO:dir $-

Compensating for Richard's keyboard stutter takes up only seven
extra bytes on my disk, not a very big sacrifice to make for a
friend!

Another example, one that is more than just a synonym for a
mistyped command, is an alias that comes into play when a com
mand becomes unavailable, perhaps because of a change in
security level. The RCP may, for example, have an ERA com
mand that is only available when the wheel byte is set. When the
wheel byte is off, ZCPR33 will ignore the command in the RCP
and forward an ERA command to the extended command
processor or error handler (assuming there is no ERA.COM).
You might want to trap the error before the error handler gets it
using an alias such as:

ERA echo e% > rasing of files not allowed

When the wheel byte is set, the ERA command will execute nor
mally (unless entered with a leading space or slash). When the
wheel byte is off, the user will get the message "Erasing of files
not allowed", which, unlike the invocation of an error handler,
makes the situation perfectly clear.

It is obviously very hard for users to remember the DU forms
for directories on a remote system, and that is one reason why
named directories are provided. But even names are not always
easy to remember precisely. Aliases can help by providing alter
native names for logging into directories, provided ZCPR33 has
been assembled with the BADDUECP option enabled so that in
valid directory-change references are passed on to the extended
command·processor.

Suppose you have a directory called Z3SHELLS. One might
easily forget the exact name and think that it is Z3SHELL or
SHELLS or SHELL. The following line in ALIAS.CMD

Z3SHELL: =SHELL: =SHELLS: z3shelIs:

29

14i

'''I

••

, .~

, .

'''I

"II

XD B4:*.D* IAA

The co....nd is thus translated by ARUNZ into

Sometimes it can be nice to allow a command that takes anum·
ber of alternative options to run with only the option entered on
the command line. I have a read me for MEX that provides
automated, menu-based operation on PC-PURSUIT. I could in
voke it as "MEX PCP" . Instead, I have the alias:

PCP mexpcp

I also do this with the KMD file transfer commands on my Z·
Node, where I define the following aliases:

the tail less the first token" .0"

current drive and user J since
none given explicitly

no file"""" given

file type in f1rst paraaeter

$: 1 • "It

$-1 • "IAAII

$.1 • "0"

PHONE edit aO:phone.dir

Now I just type PHONE and, bingo, I'm in the editor ready to
add a new name. Similarly, I used to look up numbers for people
using JETFIND as follows:

JF -gi smithones aO:phone.dir

This would give me, from any directory, a paginated listing of
lines in PHONE.DIR containing either "smith" or "jones"
(ignoring case). My poor tired fingers ache just thinking about all
that typing. Now I have the alias line:

#=CALL =NUM.BER jf.gi $1 aO:phone.dir

Now a simple" # smith" puts Smith's number up on my clean
CRT screen in a jiffy.

Here is another frequent command that causes severe finger
cramps. You want to find all the files in the current directory that
have a type starting with 'D'. Vou have to type "XD *.D*".
Wouldn't it be nice to have a directory program that
automatically wildcarded the file specification. While I was flXing
up FINDF to make my new FF, I built that feature into the code.
I've been too busy or too lazy to do the same for XD, so instead I
added the alias line:

D xd dlul:$:I*.$.I* $-1

This is a little hard to decipher at a glance because of all the dots
and colons and asterisks. But here's how it works. Suppose we are
in 84: and enter "D .D / AN' (the option / AA means to include
SYS and DlR type files). The parameters in the alias have the
following values:

S kmd s S·
SK kmd sk S·
S8 kmd sb S·
SBK kmd sbk S·
SP kmd sp S·
SPK kmd spk S·
R kmd r S·
RP kmd rp S·
RB kmd rb
RP kmd rp S·
L kmd I S·
LK kmd Ik S·

This way the user can skip typing "KMD". Actually, these aliases
each contain numerous other synonyms as well. The'S' alias, for
example, includes "SEND", "DOWN", and "DOWNLOAD"
as well. The cost in terms of disk space to add all these aliases is so
small that I let my enthusiasm and imagination run wild. Note,
however, that with the above aliases defmed, the RCP should not
have the 'R' (reset) and 'SP' (space) commands, since they will

Seven forms are covered by an entry of only 47 bytes, a cost of
less than 7 bytes each. Note that the name element Z3SHELLS,
unlike the other three name elements, does not allow an optional
colon. If it were included and for some reason there were no
directory with the name Z3SHELLS, you could get into an in
finite loop.

On my Z-Node I provide a complete set of aliases for all
possible directories so that any legal directory can be entered with
or without colons and using either the DIR or the DU form. Thus,
if Z3SHELLS is B4, the script above would be:

Z3SHELL.: = Z3SHELLS = SHELL.: = SHELL.S: = 84.: z3shells:

Before ZCPR33 came along and provided this service itself, I
would allow callers to use the DU form to log into unpassworded
named directories beyond the max-drive/max-user limits by in
cluding aliases of the above form. If the maximum user area were
3 in the above example, the commands "84:" and "84" would
still have worked (even under ZCPR30) because ARUNZ mapped
them into a DIR form of reference. Although this is no longer
necessary with ZCPR33, a complete alias line like. the one above
covers all bases. The user can even enter any of the commands
with a leading space or slash and they will still work.

Finally, I provide on the Z-Node a catch-all directory change
alias to pick up directory change commands that don't even come
close to something legal. At the end of ALIAS.CMD (i.e., after
all the other directory-change aliases described above, so that they
get the first shot at matching), I include the line:

All of these aliases can be combined into the single script:

Z3SHELL.: = Z3SHELLS = SHELL.: = SHELL.S: z3shells:

would take care of all of these possibilities. Note, however, that it
will not help a reference like "DIR SHELL:" . (If you wanted this
to be accepted, you would have to go to considerable trouble.
You might be able to go into the NDR (named directory register)
and tack onto the end an entry for a directory named SHELL
associated with the same drive and user as Z3SHELLS. All
existing NDR editors will not allow a DU area to have more than
one name, so you would have to use a debugger or patcher. If
anyc·ne tries this, let me know if it works.]

I occasionally slip up and omit the colon on the end of a direc
tory change command (and users on my Z-Node do it surprisingly
often). It is very easy for ARUNZ to pick this up as well and add
the colon for you. Just include the following alias line:

Z3SHELL = Z3SHELLS = SHELL = SHELLS z3shells:

'1: =??: =???: =????: = ?????: = ??????: = ?'??'????: = ??'???'???: echo
dOlo> irectory 070 < $0070 > is not an allowed directory.
070 < t070 > he ' m ' j valid directories are: ;pwd

Thus when the user enters the command "BADDIR:", he get the
PWD display of the system's allowed directories prefixed by the
message:

Directory BADDIR: is not an allowed directory. The valid directories are:

(Note the use of Z33RCP's advanced ECHO command with case
shifting ('070 < to switch to upper case and 'OJo>' to switch to
lower case) and control character inclusion (caret followed by the
character).]

Automating Complexity
Complexity is a relative term, and in myoid age (also relative) I

enjoy the luxury of letting my computer perform as much labor
on my behalf as it possibly can. We already saw how ARUNZ
aliases can provide short forms for commands (CR for CRUN
CH). It can also allow one to completely omit commands.

At work I have been maintaining a phone directory in a file
called PHONE.D1R. I got tired of invoking my PMATE text
editor using the command "EDIT AO:PHONE.DIR", so I added
the following line to ALIAS.CMD:

30 The Computer Journal/Issue '31

take precedence over the alias. I changed the names of these
commands to 'RES' and ·SPAC. The remote user has no reason
to use them anyway.

There are, of course, many really complicated sequences of
commands (editing, assembling, and linking files, for example)
that can very nicely be performed br aliases. Those are fairly ob
vious, and I have described quite a few in previous columns. I
won't give any more examples here, but I will describe two special
applications where ARUNZ aliases cut down a complex process
to simple proportions. The first is automation of the get-poke-go
technique pioneered by Bruce Morgen.

Automated GET·POKE·GO
Here the alias does more than just save typing-it remembers

the addresses that have to be poked, something you probably
can't do. I will illustrate it with an intriguing example that is sort
of recursive.

Suppose ARUNZ is the extended command processor, has
been renamed CMDRUN.COM, and is set to get its ALIAS.CMD
file from the root directory. Next, suppose you also want to be
able to invoke it manually and have it, in that case, look for its
ALIAS.CMD file along the entire path, including the current
directory. Suppose, furthermore, that CMDRUN.COM is a type
3 program that loads and runs at address SOOOH.

By inspecting CMDRUN.COM, we find that we have to poke a
o at offset ICH (address 801CH) to tum off the ROOT con
figuration option and an FFH at offset 24H (address 8024H) to
tum on the SCANCUR option. If we are to make manual in
vocations using the alias name 'RUN', we can put the following
line in the ALIAS.CMD file in the root directory, where the un
poked CMDRUN.COM will find it:

RUN get 8000 cmdrun.com;poke 80lcO;poke 8024 ff;jump 8000 S·

I particularly chose this example because it illustrates the slightly
more advanced version of GET-POKE-GO called GET-POKE
JUMP. One word of caution. This technique will only work un
der ZCPR33. BGii version 1.13 is very close to ZCPR33, but it
still handles the JUMP command the way ZCPR30 did, and it
cannot use JUMP when a command tail is processed.

I will now describe two very special operations that can be per
formed very nicely with ARUNZ aliases: recursion and repetition.

Special Recursion Aliases
The following pair of aliases (more or less) that implement

Dreas Nielsen's recursion technique were described in my column
in issue 28. They allow one to execute a single command recur
sively. With each cycle the user will be asked if he wants to con
tinue. So long as the answer is yes, the command will be executed
repeatedly. Upon a negative reply, the recursive sequence will
terminate, and any pending commands will execute.

The alias that the user invokes can be called "REC.URSE" so
that it can be invoked with a simple 'REC'. It contains the
following sequence of commands:

1£ nu $1
echo;echo %< a%)yntax: %<$0 C8dnaaa [par...teraj-j

elae
Irecurae2 $*

f1

If invoked without at least a command name, this alias echoes a
syntax message to the screen. Otherwise it invokes the second
alias RECURSE2. The leading slash speeds things up by signaling
the ZCPR33 command processor that it should go directly to the
extended command processor. If you are using BackGrounder-ii
(version 1.13), the slash should be replaced by a space (the alias
will then work with BGii or Z33). If you are using ZCPR30, don't
use either; a space won't do you any good, and a slash will cause
the command to fail.

The alias that does the real recursion (RECURSE2) has the
following sequence of commands:

The Computer Journal/Issue '31

fl
$*
if 1n r%)un %("$*It %)agaln?

1$0 $*

If the user answers the 'run again' query affirmatively, RECUR
SE2 will be invoked again. By using 'SO' instead of 'RECURSE2'
the script will work even if we later change its name.

Special REPEAT Alias
Here is a simple special alias that will allow a command that

takes a single argument (token) to be repeated over a whole list of
arguments separated by spaces (not commas). The name of the
alias is "REP.EAT" so that it can be invoked with a brief 'REP'.
The script contains the following commands:

$zx1f
If -nu $2

echo $1 $2
$1 $2

f1
If -nu $3

1$0 $1 $-2
f1

The 'Sz' in the first line declares the alias to be in recursive mode
(any pending commands in the multiple command line buffer are
dropped when this alias executes), and 'xif clears the flow state.
Invoked as:

REPEAT CMDNAME ARG I ARG2 ARG3

for example, interpretation of the script the first time through
results in the following commands:

x1f
If -nu argl

ect\o c.aina.. argl
c8dna_ argl

fl
If -nu arg2

lrapeat c8d~ arg2 arg3
f1

• Z Best Sellers •
ZSO Turbo Modula-2 (1 disk) $89.95
The best high·level language development system for your l80
compatible computer. Created by a famous language developer. High
performance. with many advanced features; includes editor. compiler,
linker, 552 page manual. and more.

Z-COM (5 disks) $119.00
Easy auto-instaHation complete Z-System for virtually any l80
computer presently running CP/M 2.2. In minutes you can be runnIng
lCPR3 and lRDOS on your machine. enjoying the vast benelrts.
Includes 80+ utility programs and ZCPR3: The

Z-Tools (4 dIsks) $169.00
A bundle of software tools individually priced at $260 total. Includes
the ZAS Macro Assembler. lOM dllbugglHs. REVAS4 dIsassembler,
and ITOZlZTOI source code convertllrs. H064180 support.

PUBLIC ZRDOS (1 disk) $59.50
If you have acquired ZCPR3 for yr»r l8O-compatible system and want
to upgrade to full Z-System. aI you need is ZRDOS. lRDOS features
elimination of controI-C after disk change. public directones. faster
execution than CP/M. lWChMI status for easy backup. and more'

DSD (1 disk) $129.95
The premier debugger for your 8080. ZllO. or H064180~.Full
screen. with windows for RAM. code Iisling, regislaq. and.-:t< We
feature lCPR3 versions of this llI~taI dlIbuggeI"

Quick Task (3 disks) $249.00
l80/HD64180 multitasking realtime executive for embedded com·
puter applications. Full source code. no run time fees. SIte locense for
development. Comparable \0 systems from $2000 to $040.0001

Request our free Q-T Demonstration Program.(_.) v~~_~
. sh"",,~ng-n"""'-'"

- EcbeloD,IDC* c:ost__--

P.O. Boll 705001-800
Soutb Lake Taboe, CA 95705 (916) 577-1105

31

''I

..$1

, J

- ..

-,;

The command line generated ("CMDNAME ARG Ito) is first
echoed to the screen so the user knows what is going on, and then
it is run. Since there is a second argument, the alias is reinvoked as
"REPEAT CMDNAME ARG2 ARG3". Note that the first
argument has been stripped away. Afte{ "CMDNAME ARG2"
has also been run and stripped from the command, the inter
preted command string will be:

x1f
if -nu arg3

echo elld...... arg3
elldna... arg3

f1
if -nu
Irepeat clldna...

t1

This time the null test in the second IF clause will fail, and the
cycle of commands will come to an end.

This form of the REPEAT alias suffers from the problems
Dreas Nielsen pointed out (it wipes out any commands following
it on the original command line). A rigorous version can be made
(adapting Dreas's technique) by making two aliases as follows:

REP.EAT
if nu $2

eeho;eeho:< .:>yntax; :<$0 aUa.na... argl arg2 '" - j
else

Irepeat2 S.
f1

REPEAT2
f1
SI S2
if -nu S3

ISO SI S-2

If there is not at least one argument after the name of the com
mand, a syntax message is given. Otherwise a series of operations
using REPEAT2 begins in which the command is executed on the
first argument, and then REPEAT2 is reinvoked with the same
command name but with one argument stripped from the list of
arguments. Note that the parameter S-2 is used. The first
parameter (the command verb) is given explicitly as S1. "S-2"
strips away the verb and the argument that has already been
processed. The expression "SI S-2" allows one to strip out the
second token. Similarly, "SI S2 S-3" would strip out the third
token. "SI S-3" would strip out the second and third tokens,
leaving the first one intact and moving the remaining tokens down
by two.

Configuring ARUNZ
There are several configuration options that allow the user to

tailor the way ARUNZ operates. The COM file is designed to
make it easy to patch in new values for most of the options using a
program like ZPATCH.

Execution Address for ARUNZ
ARUNZ is written as a type-3 ZCPR33 program. In other wor

ds, it can automatically be loaded to and execute at an address
other than IOOH. In this way, its invocation as an extended com
mand processor can leave most of the TPA (transient program
area) unaffected by its operation. In the LBR file posted on RASs
there are generally two versions of ARUNZ, one designed to run
at IOOH (and usable in ZCPR30 systems) and one designed to run
at 8000H. Sometimes there are also REL files that the user can
link with the ZCPR libraries to run at any desired address.

Display Control
There are two bytes just after the standard ZCPR3 header at

offset ODH in the COM file (just before the string "REG") that
control the display of messages to the user during operation of
ARUNZ. The first byte applies when ARUNZ has been invoked
under ZCPR33 as an extended command processor; the second
applies to manual invocation (or any use under ZCPR30).

Each bit of these two bytes could control one display feature.
At present, only six of the bits are used. Setting a bit causes the

32

message associated with the bit to be displayed; resetting the bit
supresses the display of the corresponding message.

The least significant bit (bit 0) affects the program signon
message. The usual setting is 'off' for ECP invocations and 'on'
for manual invocations. Bit I affects the display of a message of
the form;

Running alias "XXX"

This message is normally displayed only for manual invocations
ofARUNZ.

Bit 2 controls the display of the "ALIAS.CMD file not found"
message. This message should generally be enabled, since it will
not appear unless something has unexpectedly gone wrong, and
you might as well know about it.

Bit 3 controls the display of a message of the form:

Alias "XXX" not found

This message is normally turned on for manual invocations only.
When the alias is not found by ARUNZ operating as a ZCPR33
ECP, control is turned over to the error handler, and there is no
need for such a message. The message can alternatively be
generated, in whatever form the user desires, using a default alias
as described earlier. In that case, however, the message will ap
pear for ECP as well as manual invocations.

Bits 4 and 5 apply only when ARUNZ has been invoked as an
extended command processor, and they were included as a
debugging aid while I was first developing ARUNZ. Both are
normally turned off. If bit 4 is set, ARUNZ will display the
message ..extended command processor error" if it could not
process the alias during an ECP invocation. Bit 5 controls a
message of the form "shell invocation error". It is possible
(though very tricky and not recommended) for an alias to serve as
a shell. If ARUNZ fails to find an alias when invoked as a shell
processor, then this message will be displayed if bit 5 is set.

Locating the ALIAS.CMD File
There are several possibilities for how ARUNZ is to go about

locating the ALIAS.CMD file. There are four configuration
blocks near the beginning of the ARUNZ.COM file; they are
marked by text strings "PATH", "ROOT", "SCANCUR", and
"DU". If the byte after "PATH" is a zero, then ARUNZ will
look in the specific drive and user areas indicated by the two bytes
following the string "DU". The first byte is for the drive and has
a value of 0 for drive A, I for B, and so on. The second byte has
the user number (OOH to IFH).

If the byte after the string "PATH" is not zero, then some
form of path search will be performed depending on the settings
of the bytes after the strings "ROOT" and "SCANCUR". If the
byte after "ROOT" is zero, then the entire ZCPR3 path will be
searched. If the byte after "SCANCUR " is nonzero, then the
currently logged drive and user will be included at the beginning
of the path. If the byte after "ROOT" is nonzero, then only the
root directory (last directory specified in the path) will be sear
ched, and the byte after "SCANCUR" is ignored.

My general recommendation is to use either the root of the path
or a specified DU, especially when ARUNZ is being used as the
extended command processor. It can take.a great deal of time to
search the entire path including the current directory. With
ARUNZ as the ECP this will be done every time you make a
typing mistake in the entry of a command name, and the extra
disk accesses can get quite tedious and annoying.

Use Register for Path Control
There is an alternative way to control the path searching op

tions that can give one the best of all possible worlds. After the
string "REG" one can patch in a value of a user register, the
value of which will be used to specify the path search options
PATH, ROOT, and SCANCUR instead of the fixed con
figuration bytes described above.

Anyone of the full set of 32 ZCPR3 registers can be specified

The Computer Journal/Issue 1131

21460 Bear Creek Road. Los Gatos. CA 95030

A fast 1 megabyte RAM disk
for your AMPRO zao Little Board!

Fast RAM workspace greatly speeds up diSk-intenSive
operations like wordprocessing. database access. and
program development.

1·'41

''I

, 1\

, ~

''I

I.

MDISK (Ok RAM supplied). including complete manual and
software disk. only $149 plus $5 shipping and handling.
California residents add 6% sales tax. Checks, COD. MO
accepted.

•
• 5.75" ·,525" printed ClfCUlt board plugs Into your AMPRO lao socket

• Add standard 256K RAM chips for up to 1 megabyte ot ell.lended RAM

• MOISK driver softwar~enablesthe extended RAM to be used as a solid state disk
dflve. complete With system track for Instant warm Ooots

• Driver software supplied as bOOt-time utllltv lor use With standard AMPRO
systems uSing current BIOS verSion 3.8 Source code lor BIOS drIver Inserts also
Included tor custom Installations.

• Includes extended RAM test ullllty

• ReqUlr~ 5vdc at 60 amp via standard diSk drive power connector

• Little Board must be modified to replace the 64k RAM chIPS With sockets and
to add One Jumper Complete Instructions Included

An intriguing possibility is to allow alias name elements to be
regular expressions in the Unix (or JetFind) sense. Then one could
give an alias name like "[XS]DIR" to match either XDIR or
SDIR. Perhaps there could be a correspondence established bet
ween non-unique expressions and a parameter symbol in the
script. Then all my KMD aliases might be simpler:

S[P)*[K]* kmd sSxlSx2 $*

The name would read as follows: 'S' followed by zero or more oc
currences of 'P' followed by zero or more occurrences of 'K'. The
parameter $XI, for example, would be the first regular ex
pression, i.e., the 'P' if present or null if not. This is fun to think
about, but I am not at all sure that it would really be worth the
trouble to use or to code for. Any comments?

It would also be nice to provide Dreas Nielsen's RESOLVE
facility directly in ARUNZ aliases. These would use the percent
character ('070') as a lead-in. Any symbol enclosed in percent signs
would be interpreted as a shell variable name, and its value from
the shell file would be substituted for it in the command line. The
parameter '$070' would be used to enter a real percent character.

Next Time
As usual, I have written much more than planned but not

covered all the subjects planned. I really wanted to discuss shells
in more detail, particularly after the fiasco with the way WordStar
4 behaves by trying to be a shell when it should not be. That will
have to wait for next time, I am afraid. Also by next time I should
be ready to at least begin the discussion of ZEX.•

bit U PATH [lag (0 • use fixed au; 1 use path)
tnt 1 ROOT ilag (J ::II use t!otlFe pathj 1 use root only)
bit 2 SCANCUR flag (0 - use path only; 1 • include

current DU)

for this function by patching in a value from OOH to IFH. If any
other value is used, the fixed configuration bytes will be used. If a
valid register is specified, its contents are interpreted as follows:

By changing the value stored in the specified register, one can
change the way ARUNZ looks for the ALIAS.CMD file
dynamically depending on the circumstances.

Plans for the Future

I don't have much writing stamina left, but I would like to
finish with a few comments about developments I would still like
to see in ARUNZ. A few were mentioned in the main text above.
There is a need for some additional parameters, such as register
values in various decimal formats. One also needs more flexible
access to the directory specification part of a token. The present
parameters only allow extracting a DU reference, and they don't
allow any way to tell if an explicit directory is specified. There
should be a parameter that returns whatever DU or DIR string
(including the colon) is present. If none is present, the parameter
should return a null string.

One of the things hampering the additional of more parameters
is the arcane form they presently take. I would like to find a much
more rational system (and if you have any suggestions, I would
love to hear them). I am thinking of something like SS for system
file, followed by 'F', 'N', or 'r and then a number O.. 3. Thus
SST2 would read Systemfile-Type-2. Command line tokens might
be ST followed by 'D', 'U', 'P', 'F', 'N', or 'r and then a digit
0 .. 9 or 1.. 9. The 'P' option (path) would be the DU or DIR
prefix, if any, including the colon. Problem: what letter do I use
for the named directory or the path without the colon? The
logical choices 'N' and 'D' are already used. Maybe I have to go
to four letters: ST for token, followed by 'D' for directory part or
'F' for file part. The 'D' could be followed by various letters
(again, I am not sure what to use for all of them) to indicate:

1) the equivalent drive or default if none specified.
2) the equivalent drive or null string if none specified.
3) the same two possibilities for the user number.
4) the equivalent or given named directory (but what if the

directory has no name).
5) the whole directory prefix as given either including or not in-

cluding the colon. •

Similarly, the 'F' option could be followed by a letter to indicate
the whole filename, the name only, or the type only. As you can
see, it is not easy to identify all the things one might need and find
a rational way to express them all.

It would be nice to have prompted input where the user's input
could be used in more than one place in the command line. User
input would have to be assigned to temporary parameters (SU I,
SU2, and so on). Perhaps there should be the possibility of
specifying default values for command line tokens when they are
not actually given on the command line (as in ZEX). It might also
be useful to be able to pull apart a token that is a list of items
separated by commas.

ARUNZ could use better error reponing for badly formed
scripts. At present one just gets a message that there was an error
in the script, but there is no indication of what or where the error
was. Ideally, the interpreted line should be echoed to the screen
with a pointer to the offending symbol (NZEX has this).

There should be an option to have ARUNZ vector control to
the ZCPR3 error handler whenever it cannot resolve the alias or
when there is a defect in the script. At present, chaining to the
error handler only occurs when ARUNZ has been invoked as an
ECP.

The Computer Journal/Issue '31 33

The CP/M Corner
by Bob Blum

Patching CP1M to correct problems or
add functionality has, for good reason,
become practically an art form over the
years. Most often patches are applied
using one of two forms: altering the
existing code "on the fly" from a logic
section typically residing in the BIOS, or
permanently overlaying existing code and
unused memory areas with the desired
changes.

Either patching method serves the in
tended purpose without any clear
technical advantage over the other. The
deciding factor in favor of a method will
probably be based on the availability of
the BIOS source code for the target
system. If the BIOS source is r~adjly

available and the necessary programming
tools and talent are handy, then making
the change elsewhere seems unwise. Some
computer manufacturers, however, do
not distribute the BIOS source code
making the decision simple.

There are of course conditions to be
aware of when using either technique. The
most poignant example of what can hap
pen when making indiscriminate patches
happened to me several years ago while
testing a CCP replacement program. Af
ter many hours of tracking a very illusive
logic problem it came to my attention that
a certain section of memory was being
inadvertently altered. I immediately set up
a test condition that monitored the
memory location and would halt
execution of the program as soon as the
memory area was again altered.

Finally it happened again, and as
desired program execution was stopped,
what I found as a result of this exercise
still brings color to my cheeks. Many
months earlier I had made a BIOS
modification to "on the fly" alter the
standard CCP code if a particular error
condition occurred. The error condition
was happening as desired, but unfor-

tunately the CCP code being altered was
now different.
Patching over existing code sections can
be dangerous as well if the original code is
not saved in case it is desired at a later
time to back out of the changes.

As an example of both types of pat
ching in the form of a very useful change
to the CCP study both figures I and 2.
Each routine causes user area 0 to be sear
ched for a .COM file in the event it is not
found in the current user area.

Please excuse the brevity of this issue's
column. Some surgery early in early
December and a longer than expected
recovery period has put me far behind and
my deadline has already passed.•

FIGURE 1 - P~tch In9 ...th:>d of CCP mod I f Ic~t Ion

TITLE 'CCPUSR IF PR IME FILE NOT FOUND SEARCIi USER 0'

;P"TCIi FOR DIGIT"L RESEARCIi'S CP/M 2.2 CCP

;BY L. BARKER
P.O. BOX 135
Cli ICIIGO IL 00690

: Tli I S P"TCH I S TO "LLOW " USER TO "CCESS USER 0
;FILES lIS " DEF"ULT FOR TIiE PRIMARY FILE SEARCIi
;(ON THE CURRENTLY "CCESSED DISK) IF THE FILE
; CIIN NOT BE FOUND IN THE "CT I VE USER ARE".

; (JUST P"TCIiING TIiE JZ lIND lIDDING 31 BYTES
;OF COOE WILL \iORK ONLY IF "LL USERO .CCXo1 FILES
: ARE NO LONGER TIi"T ONE EXTENT.)

;ORIG CCP CDDE
;W/2 JMP P"TCHED

,MOVE OMA
,ONE UP.

; SCXo1EWIiERE FREE

,REIID " SEC
,TILL DONE

,THEN
iEXI7 <.a.
,ELSE IIG"IN

, IF
,PGM > CCP-TP"

LOOP EOU P"TClil~
PUSIi Ii
XCIiG
CIILL SETOMA
LXI D.FCllCC?
C"LL REIIDSO
JNZ EXITl
POP Ii
LXI D.BUF
0110 0
LXI D.CCP
MOV ".L
SUB E
MOV A,H
SBB 0
JNC EXIT2
JMP LOOP

~G FRE~SP

;REIIDOK:

USERN EOU PATCH2
DB 0

;TEST IF OPEN F"'LED lIND IF USER '>0

;" COMPUPRO VERSION
TaO S:12 Ta2 S-14
;OS I C3 CCP IIDORESS

CCP EOU 006001i
;; 1024 DSDO W/DUU
;; CCP EOU O"BOOIi
BUF EOU DOBOH
TIIP EOU 0100H

;CCP ROUTINE EOU"TES

;RESTORE CURRENT USER NLMlER

OPENP EOU CCP+ODOOH
REIIOSO EOU CCP+OOF9H
GETUSR EOU CCP+Ol13H
SETUSR EOU CCP+OI15H
SETDMII EOU CCP+01DBH
REIIOOK EOU CCP+0701H
B"DFIL EOU CCP+07OBH
MDCCP EOU CCP+0771H
FCBCCP EOU CCP+07CDH

SYSGEN EOU 1DOli ; FOR TH IS SNolPLE
FREESP EOU 200H :TO SHOW COOE SIZE
P"TCIi2 EOU OEFCoH

CJlG SYSGEN ;WHERE IN IMllGE TO P"TCH

P"TCHI EOU CCP+0608H
JMP CCPFIX i<····· P"TCIi u
LXI H, TP"

CCPF IX EOU S-FREESP-USERN
PUSH PSW
C"LL GETUSR
LXI H.USERN
MOY M,"
POP PSW
JNZ P"TCHI+3
MOY ",M
OR" "
JZ BIIOFIL
MYI E.O
C"LL SETUSR
C"LL OPENP
JNZ P"TCIiI+3
C"LL RESET
JMP BIIOF IL

;GET USER'
;"NO S"VE IT

;IF 0 DONE
;ELSE TRY
:"G"'N
oW/USER 0

34 The Computer Journal/Issue '31

FIGURE 2 - BIOS modi f ie.tio" p.tehi"g of CCP

j •••••••••••••••••••••••••••••:..........................•••••••

i* •
; • ROUTI NE TO MOO IFY CP /104 PRtM'T
j* ..
; .

. ,

; ~ .
;.
;. START NEW ROUTINES AT 00 OF
;. EXISTING BIOS PROGRAM
i* ..

i·····..················..·······...···..·..··..·············...

STA 0
LX I H. \/BOOTE
SHLD I
STA 5
LXI H.BOOS
SHLD 6
LXI B.BOH
CALL SETDMA
EI
LOA CDISK
fo4OV C.A

i"

'I

I -:I

''I

'.

;RETURN CCtlTROL TO CCP • EOF
;LOCATION OF FLAG
;LOCATION OF TEMP USER ,
;ST<RAGE
; USE DB INSTEAD OF OS TO
; INSURE FLAG AND USER ARE
;SET TO 0 INITIALLY
;NOTE F<R SINGLE DENSITY 8"
;DISK USERS:
; IF LAST> 37FH THEN BIOS TOD
;BIG TO FIT ON SYSTEM TRACKS
; (TRACKS 0 .-.NO 1 OF 0 I SKETTE)

;RESET FLAG

;RESTORE DE. ec AN) 1<F REGS

;CI£CK FLAG

; IF FLAG NDT SET NO REST<RE
;REQUIRED
; IF FLAG NON 0 TlEN GET USER ,
;RESTORE USER ,

;s.-.VE DE. ec ANO AF REGS

:RE-INITI"'TE SEARCH
; IF'" REG RETURNED NON 0 THEN
;FILE liAS FOUND IN USER 0 olR
;OTHERW I SE FILE WAS NOT FOUND
;50 RESTORE USER'

; STORE CURRENT USER I IN TE""
:CHCECK FOR USER 0
; JIM" IF CURRENT USER I NOT
;USER 0
; IF CURRENT USER I I S USER 0
; THEN RETURN CONTROL TO CCP
; SET USER , TO USER 0

;RESTORE DE. Be ANO AF REGS

;RESET FLAG

:FLAG INDIC...TES THAT USER I
;CHANGED IF FLAG I S SET
; INTERROGATE CURRENT USER I

;RETURN CCtlTROL TO CCP •
;NFOUND
;FILE FOUND IN USER 0 olR
;RESTORE DE. Be .-.NO AF REGS

; SET FLAG FOR RESTORE
;OPERATION AFTER FILE IS
; LOADED

;RETURN CCtlTROL TO CCP • RFILE

:SAVE Be.DE• .-.NO AF REGS

EQU S-810S

MV I E.OFFH
fo4V I C.20H
CALL BOOSE
STA USER
ORA ...
JNZ NUSERO

J"" EXIT

PUSH 0
PUSH 8
PUSH PSW
LOA FLAG
ORA ...
JZ RSTRI

Lo", USER
fo4OV E.A
fo4VI A.20t1
CALL BOOSE
MVI A.O
ST'" FLAG
POP PSW
POP 8
POP 0
J"" EOF
DB 0
DB 0

PUSH 0
PUSH B
PUSH PSW
fo4VI A.O
ST'" FLAG

LOCATE NORMAL CP/M oIRBUF. ALLOCATION
STORAGE ANO C1£CK VECTORS AFTER ADDED CODE

LAST:

CALL PCHAR ;OUTPUT I TO CONSOLE
EXITl : POP D ;RESTORE Be AND OE REGS

POP B
J"" CPPof'T :RETURN CCtlTROL TO CCP • CPPof'T

CHAR2: SUI OAH ; USER I IS> 10 SO SU8TR...CT 10 '.PUSH PSW :SAVE RESULT ON ST...CK
fo4VI 31H ;SEND A ...SCII 1 TO CONSOLE
CALL PCHAR

, .•$

POP PSW ;RECOVER REM"INDER
J"" Pfo4T1 ; JIM" TO OUTPUT REMAINDER

FLAG:
USER:

.
; .
;* •
;. ROUTI NE TO RESTORE USER" AFTER
;. LOADING FILE FRQ4 USER 0 olR •
i* ..

i··············....·..················.....····..············....

Lo", USER

CHECK:

PSTR1:

ST'" FLAG
J"" RF ILE

NUSERO: fo4VI C.2OH
MVI E.O
CALL BOOSE
CALL CPEN
JNZ FOUND

USRRST:

fo4OV E....
fo4VI C.20H
CALL BOOSE

EXIT: POP PSW
POP B
POP 0
J"" NFOUND

FOUND: POP PSW
POP 8
POP 0
fo4Vl 1

.; .
;.
;.
;.
;.
; .

i··· ...
;. ROUT INE TO CHECK 0 FOR FILE
j* •

i···.•••.•••.•...

;S"'VE 8C AND DE REGS

;SYSTEf04 CALL 20H (INTERROGATE)
; USER NlM3ER
; RETURNS WITH CURRENT USER ,
; IN THE A REG
;IS THE USER , > 101
; IF 50 fo4lJST PR INT T'IIO " S
; OTHERW ISE MAKE ASC I I

;THIS BEGINS THE COOE ADDED
;TO THE GOCPM PQlTlON OF CP/M

; LOAD ADR OF C1£CK ROUTI NE
; STORE AT P...TCH2
;LOAD ADR OF USRRST ROUTINE
;STORE "'T P...TCH3
; LOAD ADA OF PRtM'T ROUT INE
;STORE "'T P...TCHI
;JIM" TO BEGINNING OF CCP

LXI H.CHECK
SHLD PATCH2
LXI H.USRRST
SHLD PATCH3
LX I H. PRCM'T
SHLD P...TCHI
J"" CCP

CPI OAH
JNC CHAR2
ADI 30H

PUSH B
PUSH 0
fo4VI C.20H
MVI E.OFFH
CALL BOOSE

NORMAL SYSTEM BIOS PROGRAM STARTS HERE

RESET EOU S-FREESP-uSERN
LOA uSERN
ORA A ; I F ZERO THEN
RZ ; DON'T BOTHER
~v E,A
M' SETUSR

;FILE WAS READ SUCCESSFULLY

EXI T1 EOU S-FREESP-USERN
PUSH PSW
CALL RESET
POP PSW
JIof' READOK

; PROGRAM SIZE > CGP-TPA

EXI T2 EOU S-FREESP-uSERN
GALL RESET
JIof' BADGCP

SIZE EOU S-FREESP

Pfo4Tl :

MSIZE
BIAS
CCP
PATCHI
PATCH2
PATCH3
BIOS
BOOS

BOOSE EQU
.
; ADA OF BOOS ENTRY PO I NT

OPEN
; USED F<R SYSTEM CALLS

EQU CCP+OOOH ;CALL THIS LOCATION TO
;RE-INITIALIZE THE SEARCH

""OUND
;FILE FOUND IN olR 0

EQU CCP+76BH ; ADR TO RETLRN TO IFF ILE NOT

EOF
; FOUND

EQU CCP+701H ;JIM" TO THIS ADA AFTER USER'
;RESTORE CPERATION

RFILE EQU CCP+6DEH ; JIM" TO THI S ADR TO READ FILE
PCHAR EOU CCP+BeH ;CALL THIS LOCATION TO PRINT

;USER , PRtM'T CHARS
CPfo4PT EQU CCP+100H ;JIM" TO THIS LOCATION AFTER

;PRINTING USER' PRtM'T

PRCM"T:

EOU 56 ; 5 I ZE OF SYSTEM MEMORY
EOU (MSIZE-20)·1024 ;CALCULATION OF OFFSET
EOU 3400H-BIAS :START ,WllR OF CCP
EOU GCP+3B9H :ADDR OF FIRST PATCH
EQU CCP+6DCH ;ADDR OF SECOND PATCH
EOU CCP+6EDH ; ADDR OF TH IRD PATCH
EOU CCP+1600H :START ADDR OF BIOS
EOU CCP+B06H ; START ADDR OF BOOS
ORG BIOS :ORIGIN OF BIOS

;•.......•...•....•.••.......•.....
;.....
i···.••••...
••• BIOS THE SAME AS SUPPLIED IIITH SYSTEM UP TO THIS ROUTINE

GOCPM: fo4VI A.03CH :THIS IS THE~ CODE
;SUPPLIED IIITH CP/M

The Computer Journal J Issue '31 35

Z sets you free!

$51.00 (1 diII<)

$50.00 (1_)

$249.00 (3_1

$69.95 (1_)
$7500 (2_)
$59.50 (1_)
$69.95 (3_)
$69.95 (2_)

$85.00 (1 yr sub)
$69.00 (1_)

$90.00 (1_)
$169.00 (4_1
$129.95 (1-)

$99.00 (8_)

$49.00 (1-)
$149.00 (9_)

$89.95 (1-)

Pnce
$49.00 (3_)
$89.00 (10 dlsksl

$119.00 (5_1'

Item Name
1 ZCPRJ Cant 1__ Pad<age

2 ZCPRJ IJI*lIes Pad<age
5 z-ecm (Au1o-lnstall Corn!lieIe

Z·S\'S*"1
6 z-ecm 1lar8 MininMJm'
10 BGio lladoQroonder 2
12 PUBlIC ZROOS Plus (by I1!leII)
13 Ka'/Il"> Z-Sys1em BootabIe Otsk
14 _ MOO Z·Syslom

Booc-.Dosll
16 OUICK·TASK_

E.OCUlIVe
17~ filetmeldale

aMll*lQ
18~Upda1._
20 ZASIZ1.INK Macro__

anclu'-
21 ZDM~ tor 8OllOIZ8Oi

H064180 CPU's
22 TratlSIe10tS tor__

Soun:ecode
23 REVAS3t4 DisassemllIer
24 SpeoaII1oms 20 through 23
25 OSD-30 Ful Sa..,~
27 The lJllrenes.SYSLIB. Z3lIB.

anclVLIB
28 Graphocs and Windows LrbrarieS
29 SpeoaI hems 27, 28. and 82
30 ZBO Turtlo ModuIa·2 Unguage

System
40 InpulIOuIpuI Recorder lOP (VOR) $39.95 (1_)
41 lladoQroond Pnnter lOP (BPmter) $39.95 (1_)
44 NuKey Key ~"'" lOP $39.95 (1_)
015 SpooaIhems40lhrough'" $89.95 (3_1
60 OISCAT Dosll cataloging system $39.99 (1_)
61 TERM:! Commurncations Syslem $99.00 (6_)
64 Z-Msg Message Handling Sys1em $99.00 (1_)
66 JelF'rnd Stnng Search Utillly $49.95 (1_)
81 ZCPRJ: The Manual bound. 350 P8QlIS $19.95
82 ZCPRJ: The lJbr..... 3tO P8QlIS $29.95
83 Z·NEWS _e<. 1 y'sutJsa>ption $24.00
lU ZCPRJ and lOPs 50 pages $9.95
85 ZROOS P1'ogramme(s Manual 35 _ $8.95
88 Z·System User's Guide 80 pege Mona! $t4.95

• Indudes ZCPR3: The Manual

Sottwant Update Service
We were suprised when sales of our

Software Update Service (SUS) subscriptions
lar exceeded expectations. SUS is intended
for our customers who don't have easy access
to our Z·Node network of remote access
systems. At least nine times per year, we mail
a disk of software collected from Z·Node
Central to you. This covers non-proprietary
programs and files discussed in our Z·NEWS
newsletter. You can subscribe for one year,
six months, or purchase individual SUS disks.

There's IoIore
We couJdn'tlit all Echelon has to offer on a

single page (you can see how small this
typeface is already!). We haven't begun to talk
about the many additional software packages
and publications we offer. Send in the coupon
below and just check the "Requesting Catalog·
box lor more Information.

text files of all sorts· straight ASCII. WordStar,
library (.LBA) lile members. ·squeezed" files,
and ·crunched· liles. JetFind is very smart and
very fast. laster than any othe\' string searcher
on the market or in the pUblic domain (we know,
we tested them).

BGll (Backgrounder 2)
BGii adds a new dImenSIOn to your Z-System

or CP/M 2.2 computer system by creating a
·non·concurrent mu/tltaslung extension· to
your operating system ThIS means that you
can actually have two prc.grams actIve in your
machine, one or born ·suspended". and one
currentlyexecullng. You may then swap back
and forth between tasks as you see IiI. For
example, you can suspend your telecommuni
cabons session with a remote computer to
compose a message with your lull-screen
editor. Or suspend your spreadsheet to look
up information in your database. This is very
handy in an office environment. where constant
i"!erruption of your work is to be expected. It's
a slQnificant enhancement to Z-System and an
enormous enhancement to CP/M.

BGii adds much more than this swap
capability. There's a background print spooler,
keyboard "macro key· generator, built-in
calculator, screen dump, the capability 01
cutting and pasllng text between programs,
and a host of other features.

For best results, we recommend BGii be
used only on systems with hard disk or
RAMdisk.

JetFlnd
A string search utility is indispensible for

people who have built up a large collection of
documents. Think of how difficult it could be to
find the document to "Mr. Smith· in your
collection of 500 liles. Unless you have a
string search utility, the only option is to
examine them manually, one by one.

JetFind is a powerful string search utility
which works under any CP/M-compatible
operating system. It can search for strings in

Echelon also offers ·bootable· disks lor
some CP/M computers. which require
absolutely no installation, and are capable of
reconfiguration to change ZCPR3's memory
requirements. Bootable disks are available for
Kaypro zao and Morrow MD3 computers.

Z80 Turbo Moc:Iula-2
We are proud to offer the linest high· level

language programming environment available
lor CP/M-eompatible machines. Our Turbo
Modula-2 package was created by a famous
language developer, and allows you to create
your own programs uSing the latest technology
In computer languages - Modula-2. This
package Includes lull-screen editor, compiler,
linker, menu shell, library manager, installation
program, module library, the 552 page users
guide, and more. Everything needed to
produce useful programs is included.

"Turbo Modula-2 is lasl...[Sieve benchmark]
runs almost three times as fast as the same
program compiled by Turbo Pascal. ..Turbo
Modula-2 is well documented ..Turbo's librarian
is excellent" - Micro Cornucopia #35

ZCPR3.3
Echelon is famous lor our operating systems

products. ZCPR3. our CP/M enhancement,
was written by a software prolesslonal who
wanted to add features normally lound in
minicomputer and mainframe operating
systems to his home computer. He succeeded
wonderfully, and ZCPR3 has become the
environment of choice for ·power" CP/M
compatible users. Add the fine-tuning and
enhancements of the now-available ZCPR 3.3
to the original ZCPR 3.0, and the result is truly
flexible modern software technology,
surpassing any disk operating system on the
market today. Get our catalog for more
information - there's lour pages 01 discussion
regarding ZCPR3. explaining the benelits
available to you by using il.

Who we a"
Echelon is a unique company, oriented

exclus;vely toward your CP/M-eompatible
computer. Echelon offers top quality software
at extremely low prices; customers are
overwhelmed at the amount of software they
recieve when buying our products. For
example, the Z-Com product comes with
approximately 92 utility programs; and our
TERM III communications package runs to a
full megabyte of files. This is real value lor your
software dollar.

Z-System
Z-System IS Echelon's complete disk

operating system. which includes ZCPR3 and
ZRDOS. It is a complete 100% compatible
replacement lor CP/M 2.2. ZRDOS adds even
more utility programs, and has the nice leature
01 no need to warm boot ('C) after changing a
disk. Hard disk users can take advantage 01
ZRDOS ·archlve· status lile handling to make
incremental backup fast and easy. Because
ZRDOS is written to take lull advantage 01 the
zao, it executes laster than ordinary CP/M and
can improve your system's performance by up
to 10%.

'nstelllng ZCPR3IZ-System
Echelon offers ZCPR3!Z-System in many

different lorms. For $49 you get the complete
source code to ZCPR3 and the Installation liles.
However, this takes some experience with
assembly language programming to get
running, as you must perform the installation
yourself.

For users who are not qualilied in assembly
language programming. Echelon offers our
·auto-install· products. Z-Com is our 100%
complete Z-System which even a monkey can
install, because it installs itsel'. We offer a
money-back guarantee il it doesn't install
property on your system. Z-Com includes many
interesting utility programs, like UNERASE,
MENU, VFILER. and much more.

(=il Echelon, Inc.
P.O. Box 705001-800

South Lake Tahoe. CA 95705

(916) 577-1105
NAME _

ADDRESS _

TELEPHONE DISK FORMAT _

o REQUESTING CATALOG

ORDER FORM

Payment to be made by:
o C'ash
o Check
o Money Order
o UPS COD
o MastercardNisa:

#_-=---------Exp. Date _

Calilornia reSIdents add 7% sales tax.
Add $4.00 shipping/handling in North
Amenca, actual cost elsewhere.

ITEM

Subtotal

Sales Tax

Shipping/Handling

Total

PRICE

38 The Computer Journal/Issue *31

Remote
Designing a Remote System Program

by AI J. Szymanski

The program that I am presenting here
came about because of a need on my part
to move files from two incompatible
systems. This program may also become
the core for a fully featured remote system
driver. I have a Tiny Giant 68000 with K
OS and I love it. I also have my trusty
CP1M system which I use as a develop
ment system. Herein lies my first
headache, format incompatibility. The K
OS uses the MSDOS/IBM format for
disks and I cannot utilize that format with
my CP1M system. So I wrote this
program to allow me to drive the K-OS
system as a remote from the CP1M
system. Specifically, I now can develop
code on the Z80 and then ship it to the
68000 to assemble and run (More on
WHY later). Additionally, in order to
send TCl the code and articles on one disk
I had to be able to ship code from the
68000 back to the Z80. I generally try to
write straightforward code in the sense of
making tools, if it works for me then it's
OK. This is the rust effort I've made to
make code as bombproof and friendly as I
could. I also realize that we all hate to re
invent the wheel, thus the reason for my
sharing this code.

I will discuss each part of the program,
as it appears in tlie listing. HTPL is a For
th-like programming language that has
been covered in previous articles. It uses
the stack for the evaluation of variables.
Since it is very sensitive to any garbage left
on the stack, your code must be very
clean. I felt that it was fairly easy to create
simple tools with HTPL, also it was the
only language available on the 68000
system. As I am a die-hard C program
mer, it is my intent to port C over to the
K-OS environment.

First up are the variable declarations,
AUX: being the f1lename of the auxiliary
port. Rbuf is the string input buffer,
Rwbuf is a buffer for reading and writing
to and from the disk. Abuf is a small
character buffer. Red and reel are the
received record number and its com
plement, used to verify logical sequencing
of the records. Try is the counter for the

The Computer Journal/Issue '31

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31l
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51l
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67l
(68)
(69)
(70)

(remote. vl.0 In HTPL by AI J. Szymanski 11/87)
root
byte -enu a "MENU: R reeelve, 5 send, V view, Q quit :>"
byte s.sg a "Send " ;
byte r~sg a "Receive" ;
byte v.sg a "View" ;
byte e-sg a "eo-and not 11Ip1_nted."
byte q.sg a "Quitting Re-ote." ;
byte f.s9 a "Fllename.ext 1 " ;
byte auxname a "AUX:"
byte bbuf (128 I ;
byte rwbuf (512 I ;
byte abuf (4 I ;
byte reel rec2 try response checks~

word lastrec status flchan auxchan ;
word tl-e '" 2500; (this Is a MAGIC nUllber, this works for 1200 baud)
word pblock [20 I ;
long bufptr ;

progr~

openaux
"Re-ote.V 1.0 - Ready" wrlteln
while auxgetc 3 <> do'

"Re-ote.V 1.0 - waiting for oontrolAC" auxputs 13 auxputc
end
repeat I-.nu auxputs auxgetc toupper auxcrlf
case ('R' I reeeive

I '5' I send
I 'V' I view
I 'Q' I quit
else dontknow

end
false until

end

proc rece Ive
I~g auxputs getfllee Irwbuf Ibufptr 0 Ilastrec
while auxstat -0 do 21 auxputc ttl.. walt end
repeat

auxin dUp
if 1 a then

6 Iresponse
auxgetc Ireel auxgetc not Irec2

o dUp Ichecks~

while dup 128 <> do
dup auxgetc dUp 'checks~ + Ichecksu.
'bufptr rot + 11 +1

end drop (128)
'checks~ SOOFF and auxgetc SOOfF and
If <> then 21 Iresponse end
'reel 'rec2
if <> then 21 Iresponse end
'response 6 If - then a.rlte end
'status S0004 and SOOO4
If a then 24 Iresponse end
'Iastree +1 SOOfF and 'reel SOOfF and
If <> then 24 Iresponse end
'recl SOOfF and Ilastrec
'response auxputc
'response 24 If a then return end

end
4 a until.
6 auxputc aclose auxcrlf

end

proc send
I~g auxputs getflleo
o Ireel while auxgetc 21 <> do end

37

'.

I~

; .~

, ..~

; ..,

, 'I

attempt~ made at sending a record, 5 is the
curren! limil. Response is the variable
used 10 hold the response to make after
recei\tng a 128 byte packet. It may be
either: NAK or 21d , ACK or 6d , CAN or
24<1. These are the codes used in the
xmodem or Christensen protocol as han
dshake', Checksum is the sum of the 128
bytes 10 the packet mod 256. Lastrec is the
number of the last record received, used
to verify that the record that was just
received is the next in order. Status holds
the contents of the status word from the
last operating system call made. Fichan
and AUllchan are the file channels or
descriptors for the currently open file and
for the auxiliary port. K-OS treats all files
and devices as channels. The word time is
a variable that was needed to slow down
the process of handshaking. (Probably
half of the bugs I encountered while
working this code out, were due to in
coming bytes being stored in the character
queue on both machines. This meant that
there were occasionally garbage characters
waiting and being interpreted as han
dshakes. This value came about by testing
empirically as opposed to calculation and
it works for 1200 baud, I don't know what
would work for 3(0). PbIock is the struc
ture for ali of the operating system calls.
Bufptr is a long pointer to a byte in the
wrbuf.

The next block of code is the core of the
program. It proceeds as follows: (line 21)
open up the channel to the auxillary port,
(line 22) send to the 68000 terminal a
message that the program is up and run
ning, it's time to switch over to the CP/M
machine, (lines 23-24) wait in a loop until
a character comes in, assess it for being a
A C, if it is not, send a message asking for
the A C. This was done to clear out the
queue: Next enter a large repeat forever
loop (lines 26-33) which sends out the
menu and waits for a selection. The case
evaluates the choice and branches to a
routine, with a default at dontknow to
bullet-proof the code. The only way out
of the code at this level is to enter a 'Q' to
quit the program.

Next up are the 5 primary routines;
receive, send, view, quit and dontknow.
The basis for what is going on in send and
receive is best described in the article by
Donald Krantz, "Christensen Protocols
in C," DR. DOBBS JOURNAL (#104
June 1985 pp. 66). It is the clearest presen
tation of the xmodem protocols I have
ever read.

Receive works this way: (line 39) it asks
for the filename. ext to create and then
does so, then starts sending 21d's (NAK)

38

(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(811
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(911
(92)
(93)
(941
(95)
(96)
(97)
(98)
(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107>
(108)
(109)
(110)
(1111
(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
(123)
(1241
(125)
(126)
(127>
(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)
(147>
(1-48)
(149)
(150)
(151)
(152)
(153)

(154)
(155)
(156)
(157>
(158)
(159)
(160)

repellt
llrelld128 0 ltry 'recl +1 !recl
repellt

I lluxpUtC 0 dUp Ichecksw.
'recl SOOFF lind dUp lluxputc not lluxpUtc
whl Ie dup 128 <> do

dup Irwbuf + .1 dup
'checksum + Ichecksum
lluxputc +1

end drop
'checksum SOOFF lind auxputc
.try +1 dUp Itry If 5 a then errorout end

lluxgetc dup 24
if = then drop llclose return end
6 a until

'StlltuS S0008 lind <>0 untIl
4 lluxputC
llclose

end

proc view
Ivmsg auxputs getflleo lluxerlf 'tlme willt 0 IstlltuS
while 'StlltUS S0008 lind -0 do

llrelldl dUp lluxputC
If 26 = then

llclose lluxcrlf return
end
if auxstat 1 a then

auxgetc
If 3 a then

llclose lluxcrlf return
end

end
end

end

proc quit
Iqmsg auxwrlteln exit end

proc dontknow
Icmsg lluxwrlteln end

proc openllux
Ipblock 5 over 12 0 over +2 12
o over +4 12 Illuxname over 6 + 14
trllp Ipblock +4 .2 Illuxchlln

end

proc lluxstat
Ipblock lover 12 0 over +2 12
'lluxchlln over 4 + !2
trap Ipblock 2 + .2 1 lind (returns 1 If char wlllting else 0)

end

proc auxin
Ipblock 2 over 12 0 over +2 12
'lluxchan over +4 12 lover 6 + 12
o over 8 + 12 labuf over 10 + 14
trap 'abuf (returns the chllr on stack)

end

proc lluxpUtC
Illbuf Ipblock 3 over 12 0 over +2 12
'lluxchlln over +4 12 lover 6 + 12
o over 8 + 12 labuf over 10 + 14
trap

end

proc llcrellte
Ipblock 6 over 12 0 over +2 12
SWllP over +4 14 0 over 8 + 14
trllp Ipblock +2 .2 IStlltuS

end

proc aopen
Ipblock 5 over 12 0 over +2 12
o over +4 12 swap over 6 + 14
trap Ipblock +4 .2 Iflchlln
Ipblock +2 .2 lstatus

end

proc ac/ose
Ipblock 8 over 12 0 over +2 12
'flchlln over +4 12
trap Ipblock +2 .2 Istlltus

end

proc llwrite

The Computer Journal/Issue '31

(161)
(162)
(163)
(164)
(165)
(166)
(167>
(168)
(169)
(170)
(171)
(172)
(173)
(174)
(175)
(176)
(177)
(178)
(179)
(180)
(181)
(182)
(183)
(184)
(185)
(186)
(187)
(188)
(189)
(190)
(191)
(192)
(193)
(194)
(195)
(196)
(197)
(198)
(199)
(200)
(201)
(202)
(203)
(204)
(205)
(206)
(207)
(208)
(209)
(210)
(211l
(212)
(213)
(214)
(215)
(216)
(217)
(218)
(219)
(220)
(221)
(222)
(223)
(224)
(225)
(226)
(227>
(228)
(229)
(230)

231l
232)
233)
234)
235)
236)
237>
238)
239)
240)
241l
242)
243)
244)
245)
246)
247)
248)
249)

'pblock 3 over 12 0 over +2 12
Ifich~n over +4 12 128 over 6 + 12
o over 8 + 12 Ibufptr over 10 + 14
tr~p 'pbloCk +2 12 Ist~tus

end

proc ~re~dl

'pbloCk 2 over 12'0 over +2 12
Iflch~n over +4 12 lover 6 + 12
o over 8 + 12 'rwbuf over 10 + 14
tr~p 'pbloCk +2 12 Ist~tus

'rwbuf .1 (return re~d ch~r on st~ck)

end

proc arelld128
Ipblock 2 over 12 0 over +2 12
Ifich~n over +4 12 128 over 6 + 12
o over 8 + 12 Irwbuf over 10 + 14
trap 'pblock +2 12 Istatus

end

proc wait (expects time on stack)
Ipblock 53 over 12 0 over +2 12
swap over +4 14 trap

end

(**********UTILITY ROUTINES**········)

proc returnstllt
Istlltus
If S8oo0 lind S8000 ~ then

"processed " auxputs
end
Istlltus
if S0004 lind S0004 ~ then

"unsucessful Iy." IIUXputs
else "sucessful Iy." auxputs
end

end

proc crlf
13 putc 10 putc end

proc lIuxcrlf
13 IIUXputc 10 IIUXputc end

proc wrlteln
spr I nt cr I fend

proc auxwrlteln
IIUXputs auxcrlf end

proc auxgetc
while auxstat -0 do end auxin end

proc auxgets
while auxgetc dup <>0

do
case
I 17 J 30 exit
I 13 J drop 0 swap 11 return
I 8 J auxputc -1 32 auxputc 8 auxputc 0
else dup auxputc over 11 +1 0
end

end
end

proc auxputs
while dup II dup <>0 do auxputc +1 end
drop (pointer to end of string)

end

proc error-out
24 dUp auxputc auxputc exit end

proc getf lleo
filine Ibbuf dup auxgets auxcrlf oopen returnstat end

proc gatf Ilec
fl line Ibbuf dup dup auxgets auxcrlf acreate oopen returnstat end

proc f Illne
Ifmsg auxputs end

proc toupper
dup If 96 > then 32 - end end

end
end

until any response is made, then it enters a
large loop (lines 41-64) which begins by
getting the response and evaluating it for
being a I or SOH (start of heading), a 4 or
EOT (end of text), all other responses
being treated as junk. If the response is a
SOH it sets up its own response to be a 6
or ACK (acknowledge). Then it gets the
next incoming byte which should be the
logical record followed by the com
plement of the logical record. It then en
ters a small loop (lines 47-50) that just gets
the next 128 bytes from the stream and
puts them into memory, while calculating
the checksum for the record. The byte
that follows the data is the sent checksum,
which should match our calculated one, if
not we change our response to NAK (line
52). It then evaluates the sent record and
its complement for errors, again changing
the response on error (line 54). If by now
no change has been made in the resronse,
it writes the 128 bytes to disk. An
evaluation is then made to see if the write
went OK. if not the response is changed to
24d or CAN (cancel) which puts an im
mediate end to the data exchange for both
machines. Lastly an evaluation is made to
be sure that the record we just got was in
fact the next record we should have got
ten, if it is not, again we set up to abort
the exchange. Finally, the response is sent
to the sending machine and exiting if it
was the CAN byte. If the first byte sent
for the next block was the EOT we have
reached the end of the loop and can close
the new file and return to the menu.

Send is a much simpler routine. As
there can be no transmission errors, all
that send needs to do is calculate the
checksum and send it and the record
numbers when it needs to. First (line 69)
asks for the filename.ext to send-opens
it and reports status. Then (line 70) waits
in a loop until a NAK is received. The user
must make sure that checksum mode is set
on the receiving machine as the sync byte
for CRC mode is 'C', and that is ignored
by this routine, (this could cause potential
lockup). Once the routine has received the
sync byte, it enters a large loop (lines 71
86) in which 128 bytes are sent. Areadl28
is an O.S. call which reads 128 bytes into a
buffer. The record count is incremented.
A smaller loop (lines 73-85) is then en
tered. This loop first sends the I or SOH
byte, starting the transmission block. It
then clears the checksum. Next it gets the
current record, makes sure it is mod 256
and sends it and its complement (line 75).
The inside loop (lines 76-80) actually does
the transmission of the 128 bytes of data,
calculating the checksum along the way.

i"i

'4/

'.

, ~

11

"

The Computer Journal/Issue IJ31 39

• * * * * * * * * * * * * * * * *

K-OS ONE, 68000 OPERATING SYSTEM

The checksum is then sent, again being
corrected for mod 256. The try count is
incremented and evaluated against boun
ds, exiting if it exceeds the limit. The next
line (line 83) gets the response from the
receiving machine, evaluating it for being
24 or CAN, exiting if it is. This meant that
the receiving machine found a non
recoverable error. The routine looks for a
6 or ACK as a response, meaning that the
record was accepted correctly. The next
line (line 86) checks the status word from
this last read for the end of the me, and as
long as it is not, returns to the top of the
loop. If it were the end of the me, a 4 or
EOF is sent to complete the transfer, close
the file and return to the menu.

View is even simpler than Send as no
calculations are made, the data is just sent
to the receiver's screen. The code is
straightforward, however note the check
for 1\ C in the loop (lines lQO-IOI) to can
cel the display of the me. Quit and Don
tkDOW are unremarkable routines.

The next group of routines are the ac
tual calls made to the K-OS operating
system. A parameter block is used to han
dle all of the pointers and values used in
an O.S. call. The fIrst word in the block is
the actual command code-usually
followed by a status word. One of the
beauties of this type of arrangement is
that you can make as many parameters
blocks as you might need and place them
anywhere in memory. Pre-loading of
parameter blocks and just issuing the trap
call at the time of need can save a great
deal of time for critical operations. I'll
describe just one of the calls for example
sake, Awrite: #pblock gets the address of
the call buffer and places it on the stack, 3
puts the number 3 onto the stack above
the address, 'over' is the HTPL macro
word that takes the next to the top item on
the stack and makes a copy of it and
places the copy onto the top of the stack
(see Figure I). The '!2' means: take the
top item-treat it as an address and put
the next item down into that address, here
(line 161) it means put the value 3 into the
address of pblock. In doing this, the top
two items are removed from the stack,
leaving only the original copy of the ad
dress. The code proceeds similarly until
the' +2' which adds 2 to the top item on
the stack, here (line 161) the address of the
pblock, offsetting the pointer by one
word. It continues until the '@fichan'
which means: put onto the stack the item
found in the variable richan. By the time
the word 'trap' is reached the stack has
only the address of the pblock on it, and
trap performs the O.S. call. The

. $50.00

command value
status word
from open
number of bytes
number written
long data

8836 S. E. Stark

Portland, Or 97216

$395.00

HAWTHORNE TECHNOLOGY

-Software Included:
* K-OS ONE, the 68000 Operating

System (source code included)
* Command Processor (w/source)
* Data and File Compatible with

HS-DOS
* A 68000 Assembler
* An HTPL Compiler
* A Line Editor

Order Now:
VISA, HC

(503) 254-2005

(address of pblock) top of stack
(value of command)
(address of pblock)

word width
address of pblock ==> 3

o
f i Ie ch an. 1/

128
o

Ibuffer address of source data

* * * * * * * * * * * * * * *

SHIPPED ON AN HS-DOS 5 1/4- DISK ..

ASSEHBLED AND TESTED ONLY

-Hardware features:
* 8HHZ 68000 CPU
* 1770 Floppy Controller
* 2 Serial Pcrts (68681)
* General Pur90se Timer
* Centronics Printer Port
* l28K RAH (expandable to

5l2K on board.)
* Expansion Bus
* 5.75 % 8.0 Inches

Hounts to Side of Drive
* +5v 2A, +12 for RS-232
* Power Connector same as

disk drive

68000 SINGLE BOARD COMPUTER
$3-95.00

32 bit Features I 8 bit Price

Add a terminal, disk drive
and power, and you will have
a powerful 68000 system.

For your existing 68000 hardware, you can get the K-OS ONE
Operating System package for only $50.00. K-oS ONE is a powerful,
pliable, single user operating system with source code provided

for operating system and command processor. It allows you to
read and write HS-DOS format diskettes with your 68000 system.

The package also contains an Assembler, an HTPL (high level
language) Compiler, a Line Editor and manual.

Fig. 1

Fig. 2

40 The Computer Journal/Issue '31

parameter block looks like figure 2 before
the call is made. After the call is made
there is nothing left on the stack from this
routine, so we have to replace the address
of the parameter block onto the stack to
get access to the status word. Then We get
the word and store it in the variable
status.

The final group of routines are the
utility routines which allow for the byte by
byte exchange through the auxilliary port
and with the 68000 screen. Included in this
group is the routine Returnstat, which
evaluates the status word left from the last
operation made and displays the infor
mation on the host machine. Auxgets
allows for inline correction through the
auxilliary pon while getting a string from
the host. Toupper does have one quirk in
that if the characters '{' through' - ' are
used it will make them unusable, or at best
treat them as the control characters' [
through' \.

I have used this program now for about
a month to make a cross compiler to pon
a version of C onto the 68000 to run under
K-OS. There are a few changes that I
would suggest be made. One is to allow
the host to view the directory of the 68000
machine and eventually give the host full
command level capabilities, even to
writing a version of BYE for a full remote
operating system. As far as my version of
C, I have the cross compiler up and run
ning and have most of the 68000 run time
library done. lowe credit to the fine folks
at Hawthorne Technology. They are only
40 miles up the road from me and have
helped me a lot.

I plan to write a few more articles about
the Tiny Giant and on the C compiler I'm
working on. That's all for now folks.•

Reader's Feedback

(Continued from page 5)

natural for combining high-level language
with various assembler routines.

What have I been doing? Well, a while
back, I indicated that I was building a
linear supply for a second SB1S0. It's
almost done and I intend to write up an
article on how I designed and built it.
Perhaps it will be good enough for TCl to
publish.

I've also been doing a bit of PC Board
design on the Mac using MacDraw and
some templates that I've designed on my
own. Be glad to share that experience as
well if your readers might be interested.

T.M.
Editor's Note: We'll be looking for-

The Computer Journal/Issue 1131

ward 10 power supply article. and en
courage Ihe readers 10 let us know about
their interest in PC Board design on the
Mac.

Hardware Control
I'm using :vITU 130, :vIac +, :vIac SE,

Apple lIgs, Apple lIe, and HP Vectra.
Most of the effon is using the above for

data collection and some number crun
ching. I primarily use True Basic and C
for programs, and 6502 assembly for
some speed in the Apple II.

I would like a good tutorial on 6S000
assembly, and also on FORTH (it seems
to me to be a nice language but I haven't
sat down to learn it). I also really enjoy ar
ticles on hardware control, stepper
motors, ADCs, DADs, etc.

D.M.

Ripe Thinking
I'm using PCTECH XI6B 10MHz with

new OMTI 3520 CCS, controller of two
different drives, ST 225 and Minis 3650.
Earl Hinrichs software is outstanding.

I used to use (before my desert house in
29Palms was burglarized) in addition to
the XI6B, a CP/M-S6/MS DOS en
vironment: FALCO TS I terminal, Slicer
with Shugart 860-2 and two Mitsi 4S53s,
housed in a Ferguson BB cabinet with
Ferguson UPS. Damnation! The first
computer I built, ripped off by someone
who didn't take the manuals with the
system.

Next quarter, I plan to add a TinyGiant
6S000. 6S000 is the way to go. I don't like
DOS or segmented 86. DOS is a real
challenge to learn as a first machine, but
when you buy computers from PCTECH
·and Slicer, you get fantastic support that
makes the effort worthwhile.

TCl is more than a breath of fresh air,
it's a perspective, e.g. the editorial with
emphasis on real time programming.

I'd like to see articles on cross assem
blers, like cross assembling 6S000 code on
the SOS6, vice versa, etc. I've been won
dering about relatively cheap cross assem
blers such as Austin Codework's $25
A6S000.

Also interested in new Zilog Z2S0,
Transputers, NS32X32, digital image
progessing with NEC uPD72S1, and
GSP's like TI's 34010.

Concerning the 32X32 and Job's NEXT
machine, and other CPUs they're con
sidering, I somethimes think it should be
called WHEN Corporation. Facetiousness
aside, I am intrigued what the impact of a
UNIX machine will have, including the
shock of the retail price of the machine.

I think Don Lancaster did hit one nail
on the head. when I paraphrase him from
"Ask the Guru" in 'S51'S6: The Macin-

tosh has a fascist operating system - it
forces you to be user friendly.

One of the greatest technical BBSs I've
used is Trevor Marshalls 1000 Oaks at
S05-493-1495.

Turbo C (the only MS DOS C compiler
I have, don't know about other ones) has
a good feature with the ability to generate
symbolic files in command-line version
environment that are compatible with
MASM's .SYMDEB - those two swit
ches '-y' and '-m' make it really fun to
step through executable files.

Saw a demonstration of Tektronix's 3-d
color terminal - you put on polarized
lenses and a LCD shutter in front of
display, and its software makes basic ob
jects (wire frames in this case) pop out of
the terminal. Nice toy at $4O,OOO,but like
much technology, a matter of time
(decade or so) to have a personal 3-D
graphic environment, and speaking of
that, holographic environments like in
debugging - heap's on my left, stack's on
my right, registers straight ahead. How
long will Von Neumannism survive?

Thanks for TCJ, every issue is for ripe
reading/thinking.

R.S.

32·81t
I use CP1M Z80 S100 and single board,

plus UNIX, VAX, MICROVAX, Sun,
etc. (college is such fun, eh?).

I would really like to see more hardware
projects - especially in the area of 32-Bit
single board computers. I am particularly
interested in finding out more about the
Zilog ZSO,OOO 32-Bit micro-mainframe.
How about someone out there making a
workstation (Berkeley UNIX based, of
course) based on this chip?

R.A.

58180
I am running a Micromint SB180, with

the hardware mods to enable DTR to my
Wyse 30 termainal, and four floppies (2
DSDD and 2 DSQD, all TEAq, as well as
the 9.216 MHz upgrade and XBIOS. In
other words, I have taken my SBl80
nearly, but not quite, as far as it will go.
Next step SCSI interface and, hopefully, a
2-4 meg RAM disk. (I really don't want to
go Hard Drive, though I might end up
doing that. Afraid of reliability problems
- probably unjustified, however.)

I'd like to see: 1) SCSI, 2) Solid state
"drives" for CP/M or Z, 3) Advanced
CPU (ZSoo, Z2S0, etc), 4) Interface basics
- computer with drives, terminals,
DMA/keyboard/monitor vs. terminal,
modem.

J.B.

41

'.>j

1 4

14l

j ..jl

• J

''''

•

1~ B_la_C_k_l_s_su_e_S_A_v_a_i_la_b_le_: 1
Issue Number 1:
• RS-232 Interface Part One
• Telecomputing with the Apple II
• Beginner's Column: Getting Started
• Build an "Epram"
Issue Number 2:
• File Transfer Programs for CP/M
• RS-232 Interface Part Two
• Build Hardware Print Spooler: Part 1
• Review of Floppy Disk Formats
• Sending Morse Code with an Apple II
• Beginner's Column: Basic Concepts
and Formulas
IlSue Number 3:
• Add an 8087 Math Chip to Your Dual
Processor Board
• Build an AID Converter for the Apple
II
• Modems for Micros
• The CP/M Operating System
• Build Hardware Print Spooler: Part 2
Issue Number 4:
• Optronics, Part 1: Detecting,
Generating, and Using Light in. Elec
tronics
• Multi-User: An Introduction
• Making the CP/M User Function More
Useful
• Build Hardware Print Spooler: Part 3
• Beginner's Column: Power Supply
Design

Isne Number 8:
• Build VIC-20 EPROM Programmer
• Multi-User: CP/Net
• Build High Resolution 5-100 Graphics
Board: Part 3
• System Integration, Part 3: CP/M 3.0
• Linear Optimization with Micros

Issue Number 14:
• Hardware Tricks
• Controlling the Hayes Micromodem II
from Assembly Language, Part 1
• 5-100 a to 16 Bit RAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter
facing the Sinclair Computers, Part 2
Issue Number 15:
• lriterlacing the 6522 to the Apple II
• Interfacing Tips &: Troubles: Building
a Poor-Man's Logic Analyzer
• Controlling the Hayes Micromodem II
From Assembly Language, Part 2
• The State of the Industry
• Lowering Power Consumption in 8"
Floppy Disk Drives
• BASE: Part Three
Issue Number 16:
• Debugging 8087 Code
• Using the Apple Game Port
• BASE: Part Four
• Using the 5-100 Bus and the 68008 CPU
• Interfacing Tips &: Troubles: Build a
"Jellybean" LogIC-to-RS232 Converter

42

IISMe Number 17:
• Poor Man's Distributed Processing
• BASE: Part Five
• FAX-64: Facsimile Pictures on a
Micro
• The Computer Corner
Interfacing Tips &: Troubles: Memory
Mapped I/O on the ZXal

Issue Number 18:

• Parallel Interface for Apple II Game
Port
• The Hacker's MAC: A Letter from Lee
Felsenstein
• 5-100 Graphics Screen Dump
• The LS-l00 Disk Simulator Kit
• BASE: Part Six
• Interfacing Tips &: Troubles: Com
municating with Telephone Tone Con
trol, Part 1
• The Computer Corner
Issue Number 19:
• Using The Extensibility of Forth
• Extended CBIOS
• A $500 Superbrain Computer
• BASE: Part Seven
• Interfacing Tips &: Troubles: Com
municating with Telephone Tone Con
trol,Part2
• Multitasking and Windows with CP/M:
A Review of MTBASIC
• The Computer Corner
Issue Number 20:
• Designing an 8035 SBC
• Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a 5-100 Floppy Disk Controller:
WDZl!11 Controller for CP/M 68K
• The Computer Corner
Issue Number 21:
• Extending Turbo Pascal: Customize
with Procedures and Functions
• Unsoldering: The Arcane Art
• Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World
• Programming the 8035 SBC
• The Computer Corner
Issue Number 22:
• NEW-DOS: Write Your Own Operating
System
• Variability in the BDS C Standard
Library
• The SCSI Interface: Introductory
Column
• Using Turbo Pascal ISAM Files
• The AMPRO Little Board Column
• The Computer Corner
Issue Number 23:
• C Column: Flow Control &: Program
Structure
• The Z Column: Getting Started with
Directories&: User Areas
• The SCSI Interface: Introduction to
SCSI

• NEW-DOS: The Console Command
Processor
• Editing The CP/M Operating System
• INDEXER: Turbo Pascal Program to
Create Index
• The AMPRO Little Board Column
• The Computer Corner
Issue Number 24:
• Selecting and Building a System
• The SCSI Interface: SCSI Command
Protocol
• Introduction to Assembly Code for
CP/M
• The CColumn: Software Text Filters
• AMPRO 186 Column: Installing MS
DOS Software
• The ZColumn
• NEW-DOS: The CCP Internal Com
mands
• ZTIME-l: A Realtime Clock for the
AMPRO z-ao Little Board
• The Computer Corner

Issue Number 25:
• Repairing &: Modifying Printed Circuits
• Z-Com vs Hacker Version of Z-System
• EX{l~oring Single Linked Lists in C
• Adding Serial Port to Ampro Little Board
• Building a SCSI Adapter
• New-DOS: CCP Internal Commands
• Ampro '186: Networking with SuperDUO
• ZSIG Column
• The Computer Corner

Issue Number 26:
• Bus Systems: Selecting a System Bus
• Using the SBl80 Real Time Clock
• The SCSI Interface: Software for the
SCSI Adapter
• Inside AMPRO Computers
• NEW-DOS: The CCP Commands Con
tinued
• ZSIG Corner
• Affordable CCompilers
• Concurrent Multitasking: A Review of
DoubleDOS
• The Computer Corner

Issue Number27:.
• 68000 TinyGiant: Hawthorne's Low
Cost 16-bit SBC and Operating System
• The Art of Source Code Generation:
Disassembling Z-BO Software
• Feedback Control System Analysis:
Using Root Locus Analysis and Feed
back Loop Compensation
• The C Column: A Graphics Primitive
Package
• The Hitachi HD64180: New Life for 8
bit Systems
• ZSIG Corner: Command Line
Generators and Aliases
• A Tutor Program for Forth: Writing a
Forth Tutor in Forth
• Disk Parameters: Modifying The
CP1M Disk Parameter Block for Foreign
Disk Formats
• The Computer Corner

The Computer Journal

Issue Number 28:
o Starting Your Own BBS: What it takes to
run a BBS.
o Build an AID Converter for the Ampro
L.B.: A low cost one chip AiD converter.
o The Hitachi HD641aO: Part 2, Setting the
wait states & RAM refresh, using the PRT,
and DMA.
o Using SCSI for Real Time Control:
Separating the memory & I/O buses.
o An Open Letter to STD·Bus Manufactur·
ers: Getting an industrial control job done.
o Programming Style: User interfacing
and interaction.
o Patching Turbo Pascal: Using disassem·
bled Z80 source code to modify TP.
o Choosing a Language for Machine
Control: The advantages of a compiled
RPN Forth like language.

Issue Number 29:
o Better Software Filter Design: Writing
pipable user friendly programs.
o MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.
o Using the Hitachi HD641aO: Embedded
processor design.
o 68000: Why use a nes OS and the 68oo0?
o Detecting the 8087 Math Chip: Tem·
perature sensitive software.
o Floppy Disk Track Structure: A look at
disk control information & data capacity.
o The ZCPR3 Corner: Announcing ZC·
PR33 plus Z·COM Customization.
o The Computer Corner.

Issue Number 30:
o Double Density Floppy Controller:
An algorithm for an improved CP/M BIOS.
o ZCPR3 lOP for the Ampro L.B.:
Implementing ZCPR3 lOP support
featuring NuKey, a keyboard re-deflnitlon
lOP.
o 32000 Hacker's Language: How a
working programmer is designing his
own language.
o MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part two.
o Non·Preemptive Multitasking: How
multitasking works, and why you might
choose non·preemptive instead of
preemenptive multitasking.
o Software Timers for the 68000: Writing
and using software timers for process
control.
o Lilliput Z·Node: A remote access
system for TCJ subscribers.
o The ZCPR3Corner
oThe CP/M Corner
o The Computer Corner

'.$J

,J

, J

TotalSurface
Foreign

CanadaU.S.Subscriptions

.--,
TCJ ORDER FORM I

I

6 issues per year
o New 0 Renewal 1year $16.00

2 years $28.00
$22.00
$42.00

$24.00
'1

Back Issues ----------------- $3.50 ea.
Six or more ----------------- $3.00 ea.

$3.50 ea.
$3.00ea

$4.75 ea.
$4.25 ea.

Total Enclosed ''t

All funds must be in U.S. dollars on a U.S. bank.

o Check enclosed 0 VISA 0 MasterCard Card # _

Expiration date, Signature _

Name _

CityState, ZIP _

Address _

The Computer Journal
190 Sullivan Crossroad. Columbia Falls. MT 59912 Phone (406) 257-9119

I
I
I
I
I
I
I
I
I
I

L
~ I

"

"

J
The Computer Journal/Issue '31 43

THE COMPUTER CORNER
A Column by Bill Kibler

Well. the last month has been very
productive. and I have many things to
repon. The first topic is the great find I
made. a Sage/Stride computer for $200.
Pretty low price and at first I wasn't sure
about it. The ad said that it didn't work,
and it was for parts only. Well, let me say,
that if it was for parts, all parts machines
should come this way.

The story of this poor user goes like
this-he bought the Sage five years ago
and used it a lot. A few months ago, it
died, and he took it to a dealer. After
trying to fix it, the dealer gave up and told
him he would have to buy a new board,
and that would cost over a $1000. The
owner had seen the MACs and so bought
one of those. and gave up on the Sage.
What I got was a broken machine with all
the manuals, schematics, and software,
not to mention a broken terminal for an
extra $100. I was going to talk him down a
little, until I saw what he was parting
with-everything. Buys like this are
usually short on manuals or software, but
this person kept everything-in mint
shape too.

68K Trouble-Shooting
When I opened the thing up and started

checking what the dealer did against the
schematic, it became obvious the dealer
did not know anything about 68000s.
Having fought with them before, I knew
some of the pitfalls possible in this device.
The 68K is not like most Intel CPUs, at
least in how it does some functions. If you
plan on working on the 68K, a Motorola
factory information manual is needed,
because some of the features are much
different than Intel's. The chips removed
from the Sage had to do with the HALT
line. Typically in other CPUs this line is
pulled low when memory or some I/O
needs to have the CPU wait while it get
things ready. The Sage use of the line is in
fact that way, however the 68K can do
other things with this line.

When Motorola designed this chip,
some checks and options were added.
They felt that if something was wrong
with the system response, why continue
operation? The answer was making the
HALT a bi-directional line. This means if

44

something is not going right, like incorrect
response from memory, shut down or
make HALT active. The RESET line
works the same, you can issue a command
and force all your hardware to reset from
within a program. Heaven help the
programmer who accidentally puts a
RESET command out and then doesn't
reinitialize his hardware, they will wonder
why the machine no longer talks to them.

Several chips on the Sage which feed the
HALT line had been replaced, and yet the
HALT was still active. These chips had
been soldered in, and also a solder bridge
had been created. If one of those chips
had been the problem, the poor
replacement of it didn't help. Let me say
that I feel that whenever you replace a
soldered in device you should replace it
with a socket, but they did not. The use of
sockets assists in trouble shooting and
replacement, although for rough use,
sockets are not recommended. Most
desktop service can get by with all sockets,
but sockets cost more, and chips will work
loose over time, so therefore they are not
usually installed.

When I picked up the unit from this
gentleman, I opened it to just be sure it
had not been badly abused by the dealer.
At that time I noticed a delay line on the
board and had remarked then that it
mostly like would be that chip. After
ftXing the solder bridge and checking that
nothing was wrong with the HALT line, I
checked the delay line and found it dead.
This delay line feeds the memory two dif
ferent ways and would account for the
HALT. The 68K reads the first two
memory positions from ROM, pushes and
sets PC registers and then jumps to the
Pc. Without good memory, those pushes
don't work and thus a HALT is issued. I
didn't have an exact replacement delay
line around to try, but I did have one close
enough that when I put it in, the machine
fired enough to tell me it had BAD
memory before shutting down. Before
this test, it would not do anything at all.

I called the manufacturer in Reno and
they sent me the $6 delay line for $17. Ac
tually I got three, as the line is a special
one with two separate delays. They knew
quickly which one, as it is the most com-

mon failure item. This prompts me to
review what usually fails in computers.
My list of failure items agrees with Mur
phy's law and as such there is little you
can do to prepare for the failures. Delay
lines are high on my list of failure items.
They can be very hard to get, although
more places carry standard units now than
before. The only item higher on my list, is
PALs, as these units are available only
from the original manufacturer. Should
the maker of your machine go out of
business you are lost completely, as they
seldom publish or make available even the
algorithms for them. Another common
failure item is the 82S series of PROMS,
these small sized items were used for ad
dress decoding until PALS came along.
While at TELETEK, we published a table
of the PROM coding and it was possible
to both reprogram one and trouble-shoot
it based on the table. PALS provide very
little information to help in trouble
shooting. Normally I just check for out
put activity, keeping in mind that some of
the relationships might never be reached
to activate that line.

All these items have a tendency to run
hot, which probably accounts for their
failures. The only 74 series of chips that
can fail often are the line drivers. These
devices feed the buses and as such will
have more than one load, quite often run
ning at their design limits. 74LS374/3,
74LS367/8T97 are common units that fail
often due to overuse. Other than those, I
haven't found any special devices or
situations, other than abuse or poor
designs. If the power supply voltages
don't get to far astray (up or down) most
devices will last forever it seems.

I got the Sage up and running and have
ported over the KOS-ONE operating
system, which I cover elsewhere. What all
this has done however is take some time
away from my newest toy, the NOVIX.

NOVIX
As most of you know I have become a

user of FORTH as a language for both
speed and ease of programming. Well,
Chuck Moore the inventor if you will of
FORTH, helped design a gate array chip

(Continued on page 11)

The Computer Journal/Issue '31

